Why does rapid evolution occur in small populations?

Population size, technically the effective population size, is related to the strength of drift and the likelihood of inbreeding in the population. Small populations tend to lose genetic diversity more quickly than large populations due to stochastic sampling error (i.e., genetic drift). This is because some versions of a gene can be lost due to random chance, and this is more likely to occur when populations are small. Additionally, smaller population size means that individuals are more likely to breed with close relatives. In closed populations, individuals will be more closely related to each other compared to individuals in the previous generation. For example, in a hypothetical population consisting of only four individuals, if two pairs each produced two offspring (meaning that four new individuals are present in the next generation), the offspring must either mate with a sibling, a parent, or an individual from the other pair. Assuming they choose the non-sibling/non-parent option, all of the offspring in the third generation must mate with individuals that have the same grandparents or choose to forgo reproduction. Although this example is extreme due to the very small hypothetical population, the same patterns and forces are present in larger – albeit still small – populations.

Although the mechanism of the loss of genetic diversity due to inbreeding and drift is different, the effects on populations are the same. Both inbreeding and drift reduce genetic diversity, which has been associated with an increased risk of population extinction, reduced population growth rate, reduced potential for response to environmental change, and decreased disease resistance, which impacts the ability of released individuals to survive and reproduce in the wild.

  1. Orr HA. The genetic theory of adaptation: a brief history. Nat Rev Genet. 2005;6(2):119–27.

    CAS  PubMed  Google Scholar 

  2. Smith JM, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974;23(01):23–35.

    CAS  PubMed  Google Scholar 

  3. Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, Bustamante C. Genomic scans for selective sweeps using SNP data. Genome Res. 2005;15(11):1566–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Haasl RJ, Payseur BA. Fifteen years of genomewide scans for selection: trends, lessons and unaddressed genetic sources of complication. Mol Ecol. 2016;25(1):5–23.

    CAS  PubMed  Google Scholar 

  5. Laurent S, Pfeifer SP, Settles ML, Hunter SS, Hardwick KM, Ormond L, et al. The population genomics of rapid adaptation: disentangling signatures of selection and demography in white sands lizards. Mol Ecol. 2016;25(1):306–23.

    CAS  PubMed  Google Scholar 

  6. Linnen CR, Kingsley EP, Jensen JD, Hoekstra HE. On the origin and spread of an adaptive allele in deer mice. Science. 2009;325(5944):1095–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hubner S, et al. What we still don't know about invasion genetics. Mol Ecol. 2015;24(9):2277–97.

    PubMed  Google Scholar 

  8. Schloss CA, Nuñez TA, Lawler JJ. Dispersal will limit ability of mammals to track climate change in the Western hemisphere. Proc Natl Acad Sci. 2012;109(22):8606–11.

    CAS  PubMed  Google Scholar 

  9. Hendry AP. Eco-evolutionary dynamics. Princeton: Princeton University press; 2016.

  10. Pennings PS, Hermisson J. Soft sweeps II--molecular population genetics of adaptation from recurrent mutation or migration. Mol Biol Evol. 2006;23(5):1076–84.

    CAS  PubMed  Google Scholar 

  11. Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics. 2005;169(4):2335–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Messer PW, Petrov DA. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol Evol. 2013;28(11):659–69.

    PubMed  Google Scholar 

  13. Terekhanova NV, Logacheva MD, Penin AA, Neretina TV, Barmintseva AE, Bazykin GA, et al. Fast evolution from precast bricks: genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus. PLoS Genet. 2014;10(10):e1004696.

    PubMed  PubMed Central  Google Scholar 

  14. Garud NR, Petrov DA. Elevated linkage disequilibrium and signatures of soft sweeps are common in Drosophila melanogaster. Genetics. 2016;203(2):863–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Raquin AL, Brabant P, Rhoné B, Balfourier F, Leroy P, Goldringer I. Soft selective sweep near a gene that increases plant height in wheat. Mol Ecol. 2008;17(3):741–56.

    PubMed  Google Scholar 

  16. Jones BL, Raga TO, Liebert A, Zmarz P, Bekele E, Danielsen ET, et al. Diversity of lactase persistence alleles in Ethiopia: signature of a soft selective sweep. Am J Hum Genet. 2013;93(3):538–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Swallow JG, Hayes JP, Koteja P, Garland T Jr. Selection experiments and experimental evolution of performance and physiology. Exp Evol. 2009:301–51.

  18. Rockman MV. The QTN program and the alleles that matter for evolution: all that's gold does not glitter. Evolution. 2012;66(1):1–17.

    PubMed  Google Scholar 

  19. Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to Omnigenic. Cell. 2017;169(7):1177–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pritchard JK, Di Rienzo A. Adaptation - not by sweeps alone. Nat Rev Genet. 2010;11(10):665–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pavlidis P, Metzler D, Stephan W. Selective sweeps in multilocus models of quantitative traits. Genetics. 2012;192(1):225–39.

    PubMed  PubMed Central  Google Scholar 

  22. Chevin L-M, Hospital F. Selective sweep at a quantitative trait locus in the presence of background genetic variation. Genetics. 2008;180(3):1645–60.

    PubMed  PubMed Central  Google Scholar 

  23. Jain K, Stephan W. Response of Polygenic Traits Under Stabilizing Selection and Mutation When Loci Have Unequal Effects. G3: Genes|Genomes|Genetics. 2015;5(6):1065–74.

    PubMed  PubMed Central  Google Scholar 

  24. Tigano A, Friesen VL. Genomics of local adaptation with gene flow. Mol Ecol. 2016;25(10):2144–64.

    PubMed  Google Scholar 

  25. Remington DL. Alleles versus mutations: understanding the evolution of genetic architecture requires a molecular perspective on allelic origins. Evolution. 2015;69(12):3025–38.

    PubMed  Google Scholar 

  26. Yeaman S, Whitlock MC. The genetic architecture of adaptation under migration-selection balance. Evolution. 2011;65(7):1897–911.

    PubMed  Google Scholar 

  27. Joron M, Frezal L, Jones RT, Chamberlain NL, Lee SF, Haag CR, et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature. 2011;477(7363):203–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature. 2012;484(7392):55–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Samuk K, Owens GL, Delmore KE, Miller SE, Rennison DJ, Schluter D. Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Mol Ecol. 2017;26(17):4378–90.

    PubMed  Google Scholar 

  30. Yeaman S. Local adaptation by alleles of small effect. Am Nat. 2015;186(Suppl 1):S74–89.

    PubMed  Google Scholar 

  31. Kennish MJ, Olsson RK. Effects of thermal discharges on the microstructural growth ofMercenaria mercenaria. Environ Geol. 1975;1(1):41–64.

    Google Scholar 

  32. Hoagland K, Turner R. Range extensions of teredinids (shipworms) and polychaetes in the vicinity of a temperate-zone nuclear generating station. Mar Biol. 1980;58(1):55–64.

    Google Scholar 

  33. Mustard J, Carney M, Sen A. The use of satellite data to quantify thermal effluent impacts. Estuar Coast Shelf Sci. 1999;49(4):509–24.

    Google Scholar 

  34. Swanson C, Kim H-S, Sankaranarayanan S. Modeling of temperature distributions in Mount Hope Bay due to thermal discharges from the Brayton Point Station. Northeastern Nat. 2006;13(sp4):145–72.

    Google Scholar 

  35. O'Neill RJ, Englert TL, Ko JK. Effects of Brayton Point Station's Thermal Discharge on Mount Hope Bay Winter Flounder. Northeastern Nat. 2006;13(sp4):71–94.

    Google Scholar 

  36. DeAlteris JT, Englert TL, Burnett JAD. Trends in Fish Abundance in Mount Hope Bay: Is the Brayton Point Power Station Affecting Fish Stocks? Northeastern Nat. 2006;13(sp4):95–116.

    Google Scholar 

  37. Calabretta CJ, Oviatt CA. The response of benthic macrofauna to anthropogenic stress in Narragansett Bay, Rhode Island: a review of human stressors and assessment of community conditions. Mar Pollut Bull. 2008;56(10):1680–95.

    CAS  PubMed  Google Scholar 

  38. Nyman L. Allelic Selection in a Fish(Gymnocephalus Cernua(L.)) Subjected to Hotwater Effluents. Fishery Board of Sweden Institute of Freshwater Res Report. 1975;(54):75–82.

  39. Nevo E, Shimony T, Libni M. Thermal selection of allozyme polymorphisms in barnacles. Nature. 1977;267(5613):699.

  40. Yardley D, Avise JC, Gibbons JW, Smith MH, Gibbons J, Sharitz R. Biochemical genetics of sunfish. III. Genetic subdivision of fish populations inhabiting heated waters. Aiken, SC: Savannah River Ecology Lab., Aiken, SC; Savannah River Ecology Lab.; 1974.

    Google Scholar 

  41. Mitton JB, Koehn RK. Genetic organization and adaptive response of allozymes to ecological variables in Fundulus heteroclitus. Genetics. 1975;79(1):97–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Smith MH, Smith MW, Scott SL, Liu EH, Jones JC. Rapid evolution in a post-thermal environment. Copeia. 1983:193–7.

  43. Porcelli D, Butlin RK, Gaston KJ, Joly D, Snook RR. The environmental genomics of metazoan thermal adaptation. Heredity (Edinb). 2015;114(5):502–14.

    CAS  Google Scholar 

  44. Menozzi P, Shi M, Lougarre A, Tang Z, Fournier D. Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations. BMC Evol Biol. 2004;4(1):4.

    PubMed  PubMed Central  Google Scholar 

  45. Oleksiak M, Karchner S, Jenny M, Franks D, Mark Welch D, Hahn M. Transcriptomic assessment of resistance to effects of an aryl hydrocarbon receptor (AHR) agonist in embryos of Atlantic killifish (Fundulus heteroclitus) from a marine superfund site. BMC Genomics. 2011;12(1):263.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Reid NM, Proestou DA, Clark BW, Warren WC, Colbourne JK, Shaw JR, et al. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science. 2016;354(6317):1305–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jensen JD. On the unfounded enthusiasm for soft selective sweeps. Nat Commun. 2014;5:5281-90.

  48. Hochachka PW, Somero GN. Biochemical adaptation : mechanism and process in physiological evolution: mechanism and process in physiological evolution. USA: Oxford University press; 2001.

    Google Scholar 

  49. Angilletta MJ. Thermal adaptation: a theoretical and empirical synthesis: Oxford University press; 2009.

    Google Scholar 

  50. Harmon JP, Moran NA, Ives AR. Species response to environmental change: impacts of food web interactions and evolution. Science. 2009;323(5919):1347–50.

    CAS  PubMed  Google Scholar 

  51. Williams LM, Oleksiak MF. Signatures of selection in natural populations adapted to chronic pollution. BMC Evol Biol. 2008;8:282.

    PubMed  PubMed Central  Google Scholar 

  52. Meirmans PG. The trouble with isolation by distance. Mol Ecol. 2012;21(12):2839–46.

    PubMed  Google Scholar 

  53. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G. LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics. 2008;9(1):323.

    PubMed  PubMed Central  Google Scholar 

  54. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001:1165–88.

  55. Narum SR. Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet. 2006;7(5):783–7.

    CAS  Google Scholar 

  56. Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11(1):94.

    PubMed  PubMed Central  Google Scholar 

  57. Legendre P, Legendre LF. Numerical ecology. Amsterdam: Elsevier; 2012.

  58. Brommer JE. Whither Pst? The approximation of Qst by Pst in evolutionary and conservation biology. J Evol Biol. 2011;24(6):1160–8.

    CAS  PubMed  Google Scholar 

  59. Wilson BA, Petrov DA, Messer PW. Soft selective sweeps in complex demographic scenarios. Genetics. 2014;198(2):669–84.

    PubMed  PubMed Central  Google Scholar 

  60. Legendre P, Fortin MJ. Comparison of the mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour. 2010;10(5):831–44.

    PubMed  Google Scholar 

  61. Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE. Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet. 2006;7(2):295–302.

    Google Scholar 

  62. Gagnaire PA, Broquet T, Aurelle D, Viard F, Souissi A, Bonhomme F, et al. Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol Appl. 2015;8(8):769–86.

    PubMed  PubMed Central  Google Scholar 

  63. Xu S, Song N, Zhao L, Cai S, Han Z, Gao T. Genomic evidence for local adaptation in the ovoviviparous marine fish Sebastiscus marmoratus with a background of population homogeneity. Sci Rep. 2017;7(1):1562.

    PubMed  PubMed Central  Google Scholar 

  64. Takahashi T, Sota T, Hori M. Genetic basis of male colour dimorphism in a Lake Tanganyika cichlid fish. Mol Ecol. 2013;22(11):3049–60.

    CAS  PubMed  Google Scholar 

  65. Milano I, Babbucci M, Cariani A, Atanassova M, Bekkevold D, Carvalho GR, et al. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius). Mol Ecol. 2014;23(1):118–35.

    PubMed  Google Scholar 

  66. Fangue NA, Hofmeister M, Schulte PM. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J Exp Biol. 2006;209(15):2859–72.

    CAS  PubMed  Google Scholar 

  67. Teshima KM, Coop G, Przeworski M. How reliable are empirical genomic scans for selective sweeps? Genome Res. 2006;16(6):702–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lotterhos KE, Whitlock MC. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol Ecol. 2014;23(9):2178–92.

    PubMed  PubMed Central  Google Scholar 

  69. Podrabsky JE, Somero GN. Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. J Exp Biol. 2004;207(13):2237–54.

    CAS  PubMed  Google Scholar 

  70. Stephan W. Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation. Mol Ecol. 2016;25(1):79–88.

    CAS  PubMed  Google Scholar 

  71. Falconer DS, Mackay TFC. Introduction to quantitative genetics: Longman. Harlow: Prentice Hall; 1996.

  72. Hancock AM, Witonsky DB, Ehler E, Alkorta-Aranburu G, Beall C, Gebremedhin A, et al. Human adaptations to diet, subsistence, and ecoregion are due to subtle shifts in allele frequency. Proc Natl Acad Sci. 2010;107(Supplement 2):8924–30.

    CAS  PubMed  Google Scholar 

  73. Coop G, Pickrell JK, Novembre J, Kudaravalli S, Li J, Absher D, et al. The role of geography in human adaptation. PLoS Genet. 2009;5(6):e1000500.

    PubMed  PubMed Central  Google Scholar 

  74. Berg JJ, Coop G. A population genetic signal of polygenic adaptation. PLoS Genet. 2014;10(8):e1004412.

    PubMed  PubMed Central  Google Scholar 

  75. Bergland AO, Behrman EL, O'Brien KR, Schmidt PS, Petrov DA. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genet. 2014;10(11):e1004775.

    PubMed  PubMed Central  Google Scholar 

  76. Shi H, Kichaev G, Pasaniuc B. Contrasting the genetic architecture of 30 complex traits from summary association data. Am J Hum Genet. 2016;99(1):139–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Laporte M, Pavey SA, Rougeux C, Pierron F, Lauzent M, Budzinski H, et al. RAD sequencing reveals within-generation polygenic selection in response to anthropogenic organic and metal contamination in North Atlantic eels. Mol Ecol. 2016;25(1):219–37.

    CAS  PubMed  Google Scholar 

  78. Schrider DR, Mendes FK, Hahn MW, Kern AD. Soft shoulders ahead: spurious signatures of soft and partial selective sweeps result from linked hard sweeps. Genetics. 2015;200(1):267–84.

    PubMed  PubMed Central  Google Scholar 

  79. Kaplan NL, Hudson R, Langley C. The “hitchhiking effect” revisited. Genetics. 1989;123(4):887–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Akey JM, Zhang G, Zhang K, Jin L, Shriver MD. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 2002;12(12):1805–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 2010;6(2):e1000862.

    PubMed  PubMed Central  Google Scholar 

  82. Paaby AB, Bergland AO, Behrman EL, Schmidt PS. A highly pleiotropic amino acid polymorphism in the Drosophila insulin receptor contributes to life-history adaptation. Evolution. 2014;68(12):3395–409.

    PubMed  PubMed Central  Google Scholar 

  83. Barrett RD, Schluter D. Adaptation from standing genetic variation. Trends Ecol Evol. 2008;23(1):38–44.

    PubMed  Google Scholar 

  84. Powers DA, Place AR. Biochemical genetics of Fundulus heteroclitus (L.). I. Temporal and spatial variation in gene frequencies of Ldh-B, Mdh-a, Gpi-B, and Pgm-a. Biochem Genet. 1978;16(5–6):593–607.

    CAS  PubMed  Google Scholar 

  85. Adams SM, Lindmeier JB, Duvernell DD. Microsatellite analysis of the phylogeography, Pleistocene history and secondary contact hypotheses for the killifish, Fundulus heteroclitus. Mol Ecol. 2006;15(4):1109–23.

    CAS  PubMed  Google Scholar 

  86. Prezeworski M, Coop G, Wall JD. The signature of positive selection on standing genetic variation. Evolution. 2005;59(11):2312–23.

    Google Scholar 

  87. Hardie DC, Hebert PD. Genome-size evolution in fishes. Can J Fish Aquat Sci. 2004;61(9):1636–46.

    Google Scholar 

  88. Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour. 2017;17(2):142–52.

    CAS  PubMed  Google Scholar 

  89. Fitzpatrick B, Fordyce J, Niemiller M, Reynolds RG. What can DNA tell us about biological invasions? Biol Invasions. 2012;14(2):245–53.

    Google Scholar 

  90. Kimura M. Average time until fixation of a mutant allele in a finite population under continued mutation pressure: studies by analytical, numerical, and pseudo-sampling methods. Proc Natl Acad Sci. 1980;77(1):522–6.

    CAS  PubMed  Google Scholar 

  91. Lynch M. Scaling expectations for the time to establishment of complex adaptations. Proc Natl Acad Sci. 2010;107(38):16577–82.

    CAS  PubMed  Google Scholar 

  92. Reznick DN, Ghalambor CK. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica. 2001;112(1):183–98.

    PubMed  Google Scholar 

  93. Reznick DNG, C.K. Selection in nature: experimental manipulations of natural populations. Integr Comp Biol. 2005;45(3):456–62.

    PubMed  Google Scholar 

  94. Irschick DJ, Meyers JJ, Husak JF, Le Galliard J. How does selection operate on whole-organism functional performance capacities? A review and synthesis. Evol Ecol Res. 2008;10(2):177.

    Google Scholar 

  95. Ivanova NV, Dewaard JR, Hebert PDN. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes. 2006;6(4):998–1002.

    CAS  Google Scholar 

  96. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.

    CAS  PubMed  Google Scholar 

  98. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One. 2014;9(2):E90346.

    PubMed  PubMed Central  Google Scholar 

  99. Hosking L, Lumsden S, Lewis K, Yeo A, McCarthy L, Bansal A, et al. Detection of genotyping errors by hardy-Weinberg equilibrium testing. Eur J Hum Genet. 2004;12(5):395–9.

    CAS  PubMed  Google Scholar 

  100. Teo YY, Fry AE, Clark TG, Tai ES, Seielstad M. On the usage of HWE for identifying genotyping errors. Ann Hum Genet. 2007;71(5):701–3.

    CAS  PubMed  Google Scholar 

  101. Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics Online. 2005;1:47.

    CAS  Google Scholar 

  102. Beaumont MA, Nichols RA. Evaluating Loci for Use in the Genetic Analysis of Population Structure 1996 1996-12-22 00:00:00. 1619–26 p.

  103. Chessel D, Dufour AB, Thioulouse J. The ade4 package-I-one-table methods. R News. 2004;4(1):5–10.

    Google Scholar 

  104. Hurvich CM, Simonoff JS, Tsai CL. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J R Stat Soc. 1998;60(2):271–93.

    Google Scholar 

  105. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164(4):1567–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611–20.

    CAS  PubMed  Google Scholar 

  107. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour. 2015;15(5):1179-91.

  108. Yeomans KA, Golder PA. The Guttman-Kaiser criterion as a predictor of the number of common factors. Statistician. 1982:221–9.

  109. Borcard D, Legendre P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model. 2002;153(1):51–68.

    Google Scholar 

  110. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Community Ecol Package. 2007;10:631–7.

    Google Scholar 

  111. Dray S, Blanchet G, Borcard D, Guenard G, Jombart T, Larocque G, et al. Adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.0–4. 2016.

  112. Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation. Ecology. 1992;73(3):1045–55.

    Google Scholar 

  113. McVean G. A genealogical interpretation of principal components analysis. PLoS Genet. 2009;5(10):e1000686.

    PubMed  PubMed Central  Google Scholar 

  114. Meirmans PG. Seven common mistakes in population genetics and how to avoid them. Mol Ecol. 2015;24(13):3223–31.

    PubMed  Google Scholar 

  115. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols. 2008;4(1):44–57.

    Google Scholar 

  116. Lutterschmidt WI, Hutchison VH. The critical thermal maximum: history and critique. Can J Zool. 1997;75(10):1561–74.

    Google Scholar 

  117. Dayan DI, Du X, Baris TZ, Wagner DN, Crawford DL, Oleksiak MF. Data from: population genomics of rapid evolution in natural populations: polygenic selection in response to power station thermal effluents. Dryad Data Repository. https://doi.org/10.5061/dryad.3503s21.


Page 2

  N RB OC Mg SR BP HB
RB 40 0.1518 0.0095 0.0081 0.1089 0.1256 0.1107
OC 36 0.1198 0.0973 0.0104 0.107 0.1261 0.1095
Mg 37 0.1483 0.1184 0.1479 0.0891 0.1063 0.0908
SR 41 0.1402 0.1111 0.1353 0.1055 0.0252 0.0318
BP 47 0.1418 0.1125 0.1367 0.1048 0.1026 0.0272
HB 38 0.138 0.1093 0.1331 0.1048 0.1028 0.1015

  1. Values above the diagonal are mean pairwise FST values across all 5.4 k SNPs. Values along the diagonal (bold) are mean nucleotide diversity (π) within populations. Values below the diagonal are mean proportion of pairwise differences (π). Population abbreviations: Oyster Creek Triad (Southern Reference – Rutgers Basin (RB), TE Population – Oyster Creek Generating Station (OC), Northern Reference – Mantoloking, New Jersey (Mg)) Brayton Point Triad (Southern Reference – Succotash Marsh, Matunuck, Rhode Island (SR), TE Population – Brayton Point Generating Station (BP), Northern Reference – Horseneck Beach, Massachusetts (HB)). N: number of individuals in final SNP dataset