Which laboratory study is most relevant to treating a client who has sustained a pelvic fracture?

Which laboratory study is most relevant to treating a client who has sustained a pelvic fracture?

The pelvis is a ring made up of two bones joined at:

  • the back by the sacrum (tail bone), which is the lowest part of the spine
  • the front by the pubis symphysis (a cartilage joint).

The pelvis protects:

  • the bladder
  • the bowel
  • the organs of sexual reproduction
  • the blood vessels and nerves which go to your legs.

When walking and sitting your body weight is transmitted through the pelvis. 

After all pelvic fractures the pelvis can have a range of stability, from broken but completely stable to completely unstable. The stability of your pelvis depends partly on the direction in which it was broken, and partly by the amount of force that broke it. Not all fractures need an operation.

Types of pelvic injury

Pelvic injuries are usually caused by significant trauma, such as road traffic collisions, falls from height or a crush injury.  Due to the location of the pelvis, injuries to other structures, such as major blood vessels, the bladder and/or the bowel may occur. This means that the management and long term recovery from pelvic injuries can be complicated. 

The bony pelvis is like a ring, with three main joints (a symphysis pubis at the front and two sacroiliac joints at the back) which are held together by strong ligaments. If the ring is ‘disrupted’ due to trauma, the integrity of the pelvis may be altered. This may require an operation, or several operations to bring the pelvis back to its normal ‘pre injury’ state. There are differing types of pelvic injuries, and the treatment required will depend on the extent of the injury and which other structures are injured.

Anterior-posterior (AP) compression fractures

This type of injury results causes a widening of the pelvic ring, as illustrated below.  Widening of the sacroiliac (SI) joints at the back of the pelvis can also occur, causing internal bleeding.

Which laboratory study is most relevant to treating a client who has sustained a pelvic fracture?

Lateral compression injury

An impact from the side creates lateral compression fractures, as illustrated below. This type of pelvic injury may cause displaced fractures of the pubic bone and there is a risk of broken bone causing damage to the underlying organs such as the bladder.

Which laboratory study is most relevant to treating a client who has sustained a pelvic fracture?

Vertical shear injury

The high energy shearing force that causes this kind of injury causes major disruption to the pelvic ring, the SI joints, ligaments and blood vessels (see illustration below). This may leads to major pelvic injury instability and severe internal bleeding. 

Which laboratory study is most relevant to treating a client who has sustained a pelvic fracture?

Complex pattern injury

When pelvic injuries involve a combination of two or more of the fracture types described above, these are classified as complex pattern injuries.

Treatment of pelvic injuries

The first line treatment for pelvic injuries is to assess for and treat internal bleeding. The patient may require a procedure called an angiogram to detect exactly where the bleeding vessel is, and then ‘embolisation’ to control the bleeding. Sometimes if the patient has lost a lot of blood they will need to go directly to the operating theatre to have the pelvis ‘packed’ to prevent any further blood loss. This is a temporary procedure which is usually followed by a second operation in the days following the injury. Once the bleeding has been controlled and the patient is stabilised, the bony injuries can then be fixed by a specialist orthopaedic team.

Recovery

In the immediate postoperative period your hospital team will work to manage your postoperative pain, care for your surgical wounds and assist you with your daily needs. They will also show you some exercises you can do to aid your recovery. You may be discharged from the hospital to your home or you may be transferred to your local hospital for further rehabilitation.  The planning arrangements for your discharge are started when you are admitted to the ward. Click here for more information about going home after a pelvic injury

Following surgery for a pelvic fracture, your consultant will normally prescribe how much weight you can put through your legs.  You may be asked to be non-weight bearing through one leg or hip and so you will need to use crutches to mobilise.  A physiotherapist will teach you to do this.  You may need to use crutches for a period of up to eight weeks or longer.  If you have other injuries, your consultant may ask you to not weight bear at all on your legs whilst your injuries heal.  In this case, you will need to use a wheelchair for a short period of time.  Mobility is reviewed on an individual basis when you are seen in the outpatient clinic and have had an x-ray. Click here for more information about pelvic surgery.

The majority of patients resume a normal sex life once the pelvic fractures have healed, though remember the amount of weight you have been asked to restrict through your hip and leg also applies to any sexual position.  Please discuss this with your orthopaedic consultant so you can be correctly counselled.  Most female patients will have no problems with fertility, though there is a higher percentage chance (30% more than normal) of a woman having a caesarean section following pelvic fracture.  If you have experienced damage to your bladder, rectum or vagina at the time of your injury, you may have problems with sexual dysfunction. Sometimes pelvic injury can cause pain during intercourse for women and erectile dysfunction in men. Your consultant will advise you of this and can refer you to the most appropriate team to help you.  Click here for more information about related injuries and possible complications following pelvic surgery.

Returning to work will depend on a number of factors; your occupation, your injuries and the surgery undertaken.  Most patients find they are able to start sports after four to six months once fully healed, but your consultant will advise you based on your specific injuries and surgery when you come back for your outpatient appointment. 

(Much of the Content in the pelvic injuries section has been provided by St Georges' University Hospitals NHS Foundation Trust, Major Trauma Therapy Team, @STGTraumaPTOT)

Pelvic injuries are the result of high energy trauma; they frequently have associated injuries. The injuries can be life-threatening and lead to life-long disability. This article reviews the evaluation and management of traumatic pelvic injuries. All healthcare professionals need to have a basic understanding of the management and potential complications of these complex injuries. This will also review the importance of an interprofessional team approach to patients with pelvic fractures.

Objectives:

  • Identify the epidemiology of pelvic trauma medical conditions and emergencies.

  • Review the appropriate evaluation of pelvic trauma.

  • Outline the treatment and management options available for pelvic trauma.

  • Describe interprofessional team strategies for improving care coordination and communication to advance pelvic trauma and improve outcomes.

Access free multiple choice questions on this topic.

Traumatic injuries can range from minor wounds to major, complex injuries causing shock and multi-system organ dysfunction. Trauma is the leading cause of death of patients between the ages of 15 and 24. It accounts for approximately 30% of all ICU admissions annually.[1] Pelvic trauma raises concern due to the high energy that is generally required to cause the injury. It is frequently associated with additional injuries, transfusions requirements, and prolonged rehabilitation.

The pelvis is a ring structure composed of bone. It consists of the sacrum, coccyx, and the innominate bones: the pubis, ischium, and ilium. The innominate bones join to form the acetabulum. The innominate bones join anteriorly at the pubic symphysis. It contains blood vessels, nerves, urogenital organs, and the rectum. 

The pelvis is anatomically associated with a number of vascular structures. The aorta divides into the common iliac arteries at about the L4 level. The common iliac arteries then further divide into the internal and external branches at the sacroiliac joint. The superior gluteal artery is the most commonly injured vessel in pelvic trauma; it branches from the internal iliac artery and exits the pelvis at the sciatic notch. Other intrapelvic arteries that are associated with injuries include the inferior gluteal artery, rectal arteries, obturator artery, and the vesical artery. Veins accompany the arteries and are also prone to injury. The proximity of the veins and arteries accounts for the high incidence of combined injury. The seriousness of pelvic fractures comes from the association of other injuries, as well as the potential for hematoma and hemorrhagic shock.[2] Hemorrhage from pelvic fractures is a major cause of morbidity and mortality.

Nerve injuries are less common than vascular injuries with pelvic trauma. Lumbosacral plexus injuries account for the majority of nerve injuries after pelvic trauma. The plexus is in close proximity to the sacroiliac joint and the acetabulum, two of the more common pelvic injury locations. Root avulsion is possible and is typically only seen in more severe pelvic trauma. The lumbar plexus can be injured, though this is less common. Usually, injury occurs from traction or compression from a retroperitoneal bleed.[3]

The pelvic ring is a very solid structure, requiring a great force to disrupt the complex. Therefore pelvic fractures are relatively uncommon. The majority of pelvic fractures result from motor vehicle collisions (MVCs), falls from height, or a pedestrian or cyclist struck by a vehicle.[4][5] There is, however, a high rate of associated injuries, occurring in 12% to 62% of patients with pelvic fractures.

Pelvic fractures make up about 10% of fractures in blunt trauma patients. Over 16% of patients with pelvic fractures have at least one associated injury.[6] The most commonly injured structures are intraabdominal, with the liver, spleen, and kidneys occurring most often. Urogenital lesions account for over 40% of associated injuries. It is estimated that up to 24% of pelvic trauma patients have a urethral injury, and 20% have an associated bladder laceration. Most urethral injuries in males are located at the bulbomembranous junction.[7] One to two percent of traumatic rectal injuries are due to pelvic fractures.[8] Vaginal lacerations are reported in 2% to 4% of pelvic fractures. The American Association for the Surgery of Trauma (AAST) divides vaginal injuries into three degrees: I-III. First-degree includes contusion, hematoma, and superficial laceration involving only the mucosa. A second-degree laceration involves deep fat or muscle. Third-degree lacerations involve the cervix or peritoneum or injury into adjacent organs.[9]

Pelvic nerves and vascular lesions are also relatively common.[10] The most commonly injured arteries are anterior branches of the internal iliac artery: superior gluteal artery, lateral sacral artery, and the pedestal and obturator arteries. The most common veins injured are the presacral plexus and the prevesical veins.[11] Blood loss can also come from the fractured bones.[12]

Disruption of the pelvic ring causes an increase in the internal volume of the pelvis. The increased volume will decrease the tamponade effect of the retroperitoneal space, allowing increased blood loss.[4][13]

There are two main classification systems of pelvic fractures: the Tile and the Young-Burgess classification systems. Tile et al. described three types of underlying mechanisms for pelvic fractures. Type A is a rotationally and vertically stable fracture. Type B is rotationally unstable but vertically stable. Finally, type C is both rotationally and vertically unstable.[4] The Young-Burgess classification consists of anteroposterior compression (APC), lateral compression (LC), vertical shear (VS), or a combined mechanism (CM). Anteroposterior compression fractures are often unstable; these are the “open book” pelvic fractures. They are associated with pelvic and retroperitoneal hemorrhage. They typically occur from a head-on MVC. Lateral compression is the most common. These fractures are often stable but can be associated with a bladder rupture. These commonly result from a T-bone MVC or a pedestrian hit from the side. A vertical shear injury is usually unstable. They require a substantial force on one or both hemipelves, such as a jump from a tall height or being hit by a falling tree. They cause complete ligamentous injury.[14][15]

The Young-Burgess and Tile classification both classify pelvic fractures on the anatomic classification of injuries but fail to consider hemodynamic stability. The World Society of Emergency Surgery (WSES) created a classification that is based on anatomic classification as well as the hemodynamic stability of the patient; this helps with consideration of a treatment algorithm. The WSES classification divides pelvic injuries into three categories: mild, moderate, and severe. 

  • Minor: WSES grade I; the fracture is stable, and the patient is hemodynamically stable

    • Grade I: APC I and LC I fractures

  • Moderate: WSES grade II and grade III; the fracture is unstable, but the patient is hemodynamically stable

    • Grade II: APC II, APC III, and LC II, LC III fractures 

    • Grade III: VS and CM fractures

  • Severe: WSES grade IV: the fracture is either stable or unstable, but the patient is hemodynamically unstable.

    • Grade IV: any fracture pattern in a hemodynamically unstable patient

Minor injuries are typically treated with nonoperative management. Moderate injuries are given a pelvic binder in the field, and then should be considered for angioembolization if a blush is seen on CT scan. Severe injuries require more intense intervention. A pelvic binder should be placed in the field. Upon arrival, the patient should be treated with preperitoneal packing, resuscitative endovascular balloon occlusion of the aorta (REBOA), or angioembolization.[4] These treatment options will be discussed in more detail below.

The initial approach to any trauma patient is described in the Advanced Trauma Life Support (ATLS) course; it is a structured and standardized approach. The approach is meant to recognize and stabilize life-threatening injuries first. It is important to note an initial detailed history is not essential to begin evaluating a patient with acute injuries. The emergency medical system (EMS) personnel bringing the patient to the trauma/resuscitation area of the emergency department (ED) will provide a brief history of present illness. After the initial evaluation and stabilization of the patient, a detailed history can be obtained. A few useful facts include the mechanism of injury, whether the patient was ambulatory at the scene, bowel or bladder incontinence, and any numbness or weakness. In an awake trauma patient, the history and physical exam are highly sensitive for pelvic trauma.[16]

The initial evaluation of the trauma patient is the primary survey. The mnemonic ABCDE is a helpful way to remember the order of the evaluation.

  • A: Airway and cervical spine protection. An easy way to assess the airway is to have the patient speak. Ask them their name.

  • B: Breathing. Listen for bilateral breath sounds and look at the chest wall motion during the respiratory cycle

  • C: Circulation. This helps determine whether the patient is in shock.

  • D: Disability. This is the Glasgow coma scale (GCS)

  • E: Exposure and environmental control. Here the examiner undresses the patient the provide head-to-toe evaluation for injury.

The secondary survey follows the primary survey.[17] This is a head-to-toe complete exam. A digital rectal exam should also be performed during the secondary survey. Gross blood indicates a gastrointestinal injury. A high riding prostate, blood at the urethral meatus, an inability to void, or gross hematuria could be another indication of a urethral injury.[4][18] The pelvis is assessed with anteroposterior compression. Perineal hematoma and edema should also raise suspicion for pelvic content injuries. Any instability indicates a pelvic fracture. Any compressive force causing movement of the pelvis can disrupt any hemostasis that has occurred, so this force is generally limited to a single attempt.[17][19]

Laboratory markers are often useful in traumatic settings. Sensitive markers for hemorrhage include serum lactate level and a base deficit, which can both be obtained from an arterial blood gas. Serum lactate and base deficit can also be used to monitor resuscitation. It is important to remember hemoglobin or hematocrit levels are not sensitive for identifying acute traumatic hemorrhage.[4][5] Other useful laboratory markers are coagulation panels, such as PTT, PT/INR, and fibrinogen levels. Patients that have undergone a traumatic injury are susceptible to coagulopathy, increasing their mortality risk.[4] Thromboelastography (TEG) or rotational thromboelastometry (ROTEM) are useful tools to allow targeted resuscitation with blood products.[20]

Multiple imaging modalities can be useful in evaluating pelvic trauma. An ultrasound can be used to perform a Focused Assessment with Sonography in Trauma (FAST) exam while in the trauma/resuscitation area. A FAST exam is used to identify free fluid. It cannot differentiate bowel contents from blood.[21] Pelvic x-rays in a hemodynamically unstable patient may help identify potentially life-threatening causes of injury. If the patient is unstable, a quick x-ray can direct care. It is still important to remember there are likely additional injuries, so a pelvic fracture may not be the sole cause of instability. A pelvic x-ray is also useful to evaluate for hip pathology, such as a fracture or dislocation that needs quick reduction.[22]

X-ray, while useful for quick evaluation in an unstable patient, is still inferior to computed tomography (CT) for the evaluation of fractures.[22] CT scanning remains the gold standard. A CT scan not only identifies fractures but has the ability for three-dimensional bone reconstruction. 3-D reconstruction allows better operative planning for patients.[4] The ability to add contrast increases the ability to find injuries. A triple-phase contrast-enhanced CT consists of an arterial phase, a portal phase, and a delayed phase.[4][23] A blush on the arterial phase indicates active arterial bleedings; it can be seen as a hyperdensity within a hematoma. A delayed phase will show injuries to urologic structures. CT scan also has the benefit of adding rectal contrast in cases where a rectal injury is suspected.

A urethrogram can help diagnose a urethral injury. As urethral injuries alone are not life-threatening, any vascular or visceral injury should be managed prior to undergoing urethrogram. In the trauma setting, a urethrogram should be performed in a fluoroscopic suite by a trained radiologist. In an ascending study, a 6-8 French Foley catheter is inserted into the fossa navicularis, which is just beyond the meatus. The foley balloon is filled with 2 to 3 mL of water. A C-arm is brought over the bed and is rotated to either the left or right 30 degrees to an anterior oblique position. The patient then elevates his left side to the same degree. 30 mL of iodinated contrast is slowly injected into the foley catheter until the contrast is visualized within the bladder. A descending study fills the bladder with 400 mL of contrast. The patient is then asked to micturate into a bottle in a standing oblique position. An injury is visualized as contrast extravasation. A complete urethral transection typically requires both an ascending and descending urethrogram to estimate the length of transection.[18][24][25]

Pelvic fractures, no matter the grade, have the potential to become life-threatening. Treatment for pelvic fractures starts with the ABCs (airway, breathing, and circulation) during the primary survey. Adequate resuscitation is crucial in any trauma patient. Two large-bore IVs should be placed in all patients arriving at the trauma bay. Hypotension should be addressed with aggressive fluid resuscitation, followed by blood products if the patient remains hypotensive.

Pelvic binders should be placed when there are signs of pelvic ring disruption in either stable or unstable patients. The binder acts in two ways to decrease bleeding. It compresses the bleeding from the bones, but they also decrease the volume within the pelvis. By decreasing the volume, it promotes a tamponade effect. Pelvic binders are a temporary measure until a more definitive repair can occur. The pelvic binder is only useful if it is applied correctly; The binder must be placed around the greater trochanter and pubic symphysis to adduct the legs and decrease pelvic volume correctly.[4][26] A pelvic binder should not be placed in a lateral fracture, as this can increase bleeding.[27]

Hemodynamically Stable Pelvic Fractures

Evidence of arterial bleed on CT should go directly for angioembolization. Pelvic angiography is usually performed by interventional radiology (IR). Angioembolization is successful in 85% to 100% of cases.[28] Angioembolization is usually performed via a femoral artery approach. If the femoral is unavailable, the left brachial or axillary artery may be used. In the best circumstances, a single bleeding vessel is visualized and embolized. In some circumstances, there are multiple bleeding vessels, or the single bleeding vessel cannot be accessed. In this situation, a nonselective, or “shotgun” approach can be performed. This is possible due to the vast collateral network within the pelvis. The most common vessels for embolization are the internal iliac artery and its branches: the superior gluteal artery, the obturator artery, and the internal pudendal artery. Absorbable gelatin compressed sponge and coils are typically used for embolization. Absorbable gelatin compressed sponge is a temporary agent that is inexpensive and readily available. Coils are permanent. Coils only work if the coagulation pathway is intact, as they induce a thrombotic effect leading to clot formation and occlusion.[29] After embolization, a completion angiogram is used to confirm the bleeding has stopped.[30][27] Studies have shown angioembolization within 90 minutes of arrival to the hospital had improved survival rates.[31] Angioembolization can be repeated in patients with continued hemorrhage and hemodynamic instability after first embolization. 

Patients with hemodynamic stable pelvic fractures should be admitted to the hospital for observation.

Hemodynamically Unstable Pelvic Fractures

Generally, patients will go for immediate laparotomy if they remain unstable with concern for injury. However, many authors argue angioembolization should be done prior to going to the operating room (OR). The basis of the argument is there is a high likelihood of finding an arterial bleeding source, and because there is a strong correlation between time to embolization and survival as stated above. 

Preperitoneal packing (PPP) involves putting packing up against the peritoneum to create a tamponade effect. It is less time consuming than angioembolization. Preperitoneal packing is useful for hemodynamically unstable patients at centers without IR. It can also be used as a bridge to more time-consuming procedures, such as angioembolization, at level 1 trauma centers. Another important use is in patients that are hemodynamically unstable and require other life-saving surgical intervention. Packing is performed through a vertical midline incision of 6 to 8 cm or Pfannenstiel incision. Dissection continues down to fascia; fascia is then incised in the midline to access the preperitoneal space. Ringed forceps are then used to put three surgical pads into the space, with the first being pushed all the way to the sacrum. The same is performed on the contralateral side. Six surgical pads are typically enough to complete the packing. The fascia is then quickly closed over the surgical pads, and the skin is closed in a running fashion.[32]

Resuscitative endovascular balloon occlusion of the aorta (REBOA) is an alternative to cross-clamping the aorta. REBOA has emerged in recent years at trauma centers around the world. It uses a balloon catheter to occlude the aorta in an attempt to minimize life-threatening hemorrhage. It has been speculated that REBOA can be useful in pelvic trauma. Literature has shown zone III (infra-renal) occlusion is useful in pelvic trauma as it has little visceral organ insult.[4][33] The common femoral artery is typically used for access. If there is a suspected femoral or iliac injury, one side of the contralateral side should be accessed. An 18G needle is used to access the artery. A guidewire is introduced into the needle and advanced into the vascular system. The needle is removed, and the tract is dilated until a 7 Fr sheath can be inserted into the vessel. The catheter position is measured by measuring the distance from the umbilicus to the femoral catheter insertion site and is then inflated until moderate resistance is felt or there is a loss in the contralateral pulse, typically 15 to 20 mL in the balloon for zone III deployments. The patient should then be expedited to either IR or the OR for definitive treatment. REBOA inflation time is ideally less than 30 minutes but can be used for up to 60 minutes. Upon deflating REBOA, hemodynamic changes can be noted. The balloon can be intermittently reinflated to allow resuscitation and reduce reperfusion injury. The femoral artery access site may require surgical repair.[34] If a common femoral access site is not available, then the left brachial or left common carotid artery may be used.[35][36][37]

Unstable pelvic fractures require surgical fixation. Early fixation has been shown to improve pain, improved fracture reduction, earlier mobilization, and control of bleeding from fractured bones.[4][38] There are a few surgical options available. External fixation allows initial stabilization in hemodynamically unstable patients and those with pelvic contamination. It is generally placed within the operating room. The common pin locations are the iliac wings and the anterior inferior iliac spine. The iliac wing is accessed by making an incision about 2 cm posterior to the anterior superior iliac spine down to the bone. The gluteal ridge is the target insertion spot due to its strength. The pin is inserted manually.[39] Anterior inferior iliac spine pins have greater pullout strength and provide better access for reduction. These two options only provide anterior pelvis fixation. For VS injuries, posterior stabilization is required with skeletal traction.[40][41] Generally, iliac wing fracture or acetabular fracture are contraindications to external fixation. 

Definitive repair, if needed, is undertaken once the patient has been adequately resuscitated and stabilized. Patients that are hemodynamically stable or “borderline” can be safely taken for definitive repair within 24 hours of injury. Physiologically deranged polytrauma patients should not be taken for definitive repair until they are stable. Studies show post-injury complication rates are increased if definitive repair is completed within four days of injury in polytrauma patients. Complications decreased when surgery was delayed until six to eight days post-injury. [42] Therefore, it is recommended to wait at least four days to proceed with any definitive treatment of pelvic fractures. Posterior ring injury reconstructions are most important for functional outcomes. APC I and LC I are managed nonoperatively. APC II is typically managed with anterior symphyseal plating. APC III is treated with either anterior symphyseal multihole plating or external fixation with posterior stabilization with sacroiliac screws. LC II is treated with ORIF of the ilium. LC III and VS require posterior stabilization with sacroiliac screws. It can be done open or percutaneous based.[43][44][45] Open reduction and internal fixation provides a better repair and allows earlier mobilization. Percutaneous fixation of the posterior ring can be useful in patients with traumatic posterior skin injuries.[38]

Associated bladder injuries may require repair. The location of the injury dictates the management. Generally, extraperitoneal bladder injuries are treated nonoperatively; intraperitoneal bladder injuries require surgical repair. A foley catheter remains in place for about 14 days. A repeat cystogram should be performed prior to catheter removal.[46] Urethral injuries are possible with pelvic fractures. Complete transection of the urethra should be treated with a suprapubic catheter and delayed repair; partial transection is manageable with a foley catheter. [25] Any associated perineal injury should be closely monitored for vesicocutaneous or urethrocutaneous fistula formation.[47]

Sigmoid and intraperitoneal rectal injuries should be debrided and primarily repaired when able. An injury comprising less than 50% circumference is eligible for primary repair. This has been shown to reduce complications. For injuries that cannot be primarily repaired, resection with primary anastomosis is usually performed with or without fecal diversion.[48] For injuries that are greater than 50%, the colon or rectum should be debrided to healthy tissue. Then a primary anastomosis or diversion can be performed. Extraperitoneal rectal injuries are treated with primary repair with a diverting colostomy.[49] Recent studies have shown no use for presacral drainage or distal washout for extraperitoneal rectal injuries.[50]

Vaginal laceration treatment is dependent on the degree. First-degree injuries generally only require gauze packing. Second and third-degree injuries require surgical repair, typically by a gynecologist.[9]

Differential Diagnosis

  • Acetabular pelvic fracture

  • Open book pelvic fracture

  • Vertical shear pelvic fracture

Unstable pelvic fractures have a mortality of about 8%. Patients that are in hemorrhagic shock at presentation have increased mortality. Patients that present with an open pelvic fracture have a mortality risk of up to 45%. As noted earlier, the seriousness of pelvic fractures stems from the associated injuries; the risk of death from isolated pelvic fracture ranges from 0.4% to 0.8%.[12][51][52]

The associated injuries with pelvic fractures make prognostic measurements difficult. One study showed that over 60% of patients with traumatic pelvic fractures experience chronic pelvic pain. Chronic pain is associated with depression and anxiety. External fixation is associated with pin site infections that can be treated with PO or IV antibiotics +/- debridement of site. Lateral femoral cutaneous nerve injury can also occur from external fixation.[53]

Urogenital injuries can be associated with sexual dysfunction, such as dyspareunia, erectile dysfunction, and restricted motion. Urinary and fecal incontinence are also possible. Urethral strictures have been reported in 31% to 69% of complete urethral transections.[18] Urethral strictures can be treated conservatively with dilation. However, if dilation fails repair with posterior urethroplasty, also called bulbomembranous anastomosis (BMA), may be required. BMA success rates are over 90%.[25]

Urinary incontinence is initially treated conservatively. Pelvic floor strengthening and biofeedback are used initially. Duloxetine, a selective serotonin/norepinephrine reuptake inhibitor is used in combination with physiotherapy successfully in many patients.[54] A sacral nerve stimulator can be implanted within the upper buttock and has been used to treat incontinence successfully.[55] Urinary incontinence can be treated with artificial urinary sphincter implantation when other methods fail.[7]

Similarly, fecal incontinence starts with nonoperative management. Dietary changes and fiber supplements can optimize stool consistency and limit urgency. Medications can be used to slow the bowels. Examples include the antidiarrheals Imodium and Lomotil, the bile acid binder cholestyramine, and medications the reduce the reflexive relaxation of the sphincter, such as amitriptyline. Physical therapy and biofeedback have been used successfully to strengthen the pelvic floor. If conservative treatments fail, a sphincteroplasty can be performed. Other options include implanting artificial anal sphincters or magnetic anal sphincters. Sacral nerve stimulators can also be successful.[56]

It is important to note a pelvic binder itself can cause complications. A pelvic binder should not be placed for more than 24 hours. The binder can cause skin necrosis and pressure ulcers as soon as 2 to 3 hours after placement.[4] There is a high risk of deep venous thrombosis with all trauma patients; this risk is compounded by decreased mobility and bone fractures. Patients should be treated with mechanical serial compression devices and chemoprophylaxis until they are ambulatory.

Complications from angioembolization occur in up to 5% of cases. Complications can occur at the access site and include hematoma, pseudoaneurysm, dissection, or thrombus. Pelvic tissue necrosis can be a life-threatening complication and requires exploration and repair. Patients can have a reaction to the contrast itself or develop contrast nephropathy and an acute kidney injury. 

Potential REBOA complications are numerous and mainly involve vessel injuries. The balloon can cause an arterial rupture, perforation, or dissection. The catheter itself can create lower extremity ischemia and subsequent reperfusion injury and compartment syndrome. Balloon occlusion also leads to distal ischemia. Prolonged occlusion leads to organ ischemia, which can be irreversible. Organ reperfusion can lead to multiorgan dysfunction or failure, including acute kidney injury, liver failure, intestinal ischemia, spinal cord infarction, and death. Access site complications can be treated with patch repairs, arterial reconstructions with native or artificial tissue, or bypasses. If these measures fail, then the limb would require amputation. Aortic injuries from REBOA are generally life or limb-threatening. Multiorgan dysfunction is generally treated medically.[35][36]

Cell phone use while driving causes an estimated 1.6 million car crashes annually. About 1 in 4 crashes are related to texting while driving. Drivers should always obey the speed limit, avoid driving under the influence, and should not be distracted while driving. Pedestrians should always be aware of the traffic around them. It should not be assumed a car will see them or give the pedestrian the right of way.

It is important to set patients’ expectations. The patient will need extended rehabilitation and physical therapy from a complex pelvic fracture. They should be educated on the possibility of chronic pain and should receive information on pain management options, as well as options for the possible depression and anxiety that may follow. Patients with colostomies from colonic injuries should receive ostomy training. The possibility of sexual dysfunction should be addressed with appropriate referrals to OB/GYN or urology.

Pearls and Other Issues

  • Pelvic injuries are associated with high mortality, associated internal injuries, and significant bleeding.

  • A plain pelvic x-ray is quick; however, a CT scan is the gold standard for fractures. A scan ideally should be performed with IV contrast with an arterial phase, a portal phase, and a delayed phase.

  • Obtain consults to orthopedics and urology, if needed, early for optimal care and timely management of the patient.

  • Early involvement of physical and occupational therapy are crucial for recovery.

  • It is essential to counsel patients on potential complications and to set recovery expectations.

Managing traumatic pelvic fractures requires an interprofessional team approach. The emergency medicine and trauma surgery teams should recognize the risk factors for pelvic fractures and involve the orthopedic teams early when fractures are identified. Potential complications should be common knowledge for the teams involved, allowing for early detection. Physical and occupational therapy should be involved early. Pelvic trauma patients truly do require an interprofessional team to achieve the best results.

Review Questions

Which laboratory study is most relevant to treating a client who has sustained a pelvic fracture?

Pelvic Radiograph Left Hip Fracture. Contributed by Scott Dulebohn, MD

Which laboratory study is most relevant to treating a client who has sustained a pelvic fracture?

Pelvic Radiograph Right Hip Fracture. Contributed by Scott Dulebohn, MD

Which laboratory study is most relevant to treating a client who has sustained a pelvic fracture?

Pelvic ring injuries. Image courtesy Dr Chaigasame

1.

Mackenzie EJ, Rivara FP, Jurkovich GJ, Nathens AB, Frey KP, Egleston BL, Salkever DS, Weir S, Scharfstein DO. The National Study on Costs and Outcomes of Trauma. J Trauma. 2007 Dec;63(6 Suppl):S54-67; discussion S81-6. [PubMed: 18091213]

2.

Wijffels DJ, Verbeek DO, Ponsen KJ, Carel Goslings J, van Delden OM. Imaging and Endovascular Treatment of Bleeding Pelvic Fractures: Review Article. Cardiovasc Intervent Radiol. 2019 Jan;42(1):10-18. [PMC free article: PMC6267662] [PubMed: 30225676]

3.

Chiodo A. Neurologic injury associated with pelvic trauma: radiology and electrodiagnosis evaluation and their relationships to pain and gait outcome. Arch Phys Med Rehabil. 2007 Sep;88(9):1171-6. [PubMed: 17826464]

4.

Coccolini F, Stahel PF, Montori G, Biffl W, Horer TM, Catena F, Kluger Y, Moore EE, Peitzman AB, Ivatury R, Coimbra R, Fraga GP, Pereira B, Rizoli S, Kirkpatrick A, Leppaniemi A, Manfredi R, Magnone S, Chiara O, Solaini L, Ceresoli M, Allievi N, Arvieux C, Velmahos G, Balogh Z, Naidoo N, Weber D, Abu-Zidan F, Sartelli M, Ansaloni L. Pelvic trauma: WSES classification and guidelines. World J Emerg Surg. 2017;12:5. [PMC free article: PMC5241998] [PubMed: 28115984]

5.

Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Hunt BJ, Komadina R, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Stahel PF, Vincent JL, Spahn DR., Task Force for Advanced Bleeding Care in Trauma. Management of bleeding following major trauma: an updated European guideline. Crit Care. 2010;14(2):R52. [PMC free article: PMC2887168] [PubMed: 20370902]

6.

Demetriades D, Karaiskakis M, Toutouzas K, Alo K, Velmahos G, Chan L. Pelvic fractures: epidemiology and predictors of associated abdominal injuries and outcomes. J Am Coll Surg. 2002 Jul;195(1):1-10. [PubMed: 12113532]

7.

Zhang F, Liao L. Artificial urinary sphincter implantation: an important component of complex surgery for urinary tract reconstruction in patients with refractory urinary incontinence. BMC Urol. 2018 Jan 08;18(1):3. [PMC free article: PMC5759840] [PubMed: 29310634]

8.

Giannoudis PV, Grotz MR, Tzioupis C, Dinopoulos H, Wells GE, Bouamra O, Lecky F. Prevalence of pelvic fractures, associated injuries, and mortality: the United Kingdom perspective. J Trauma. 2007 Oct;63(4):875-83. [PubMed: 18090020]

9.

Li P, Zhou D, Fu B, Song W, Dong J. Management and outcome of pelvic fracture associated with vaginal injuries: a retrospective study of 25 cases. BMC Musculoskelet Disord. 2019 Oct 22;20(1):466. [PMC free article: PMC6806549] [PubMed: 31640643]

10.

Siegmeth A, Müllner T, Kukla C, Vécsei V. [Associated injuries in severe pelvic trauma]. Unfallchirurg. 2000 Jul;103(7):572-81. [PubMed: 10969545]

11.

Pereira SJ, O'Brien DP, Luchette FA, Choe KA, Lim E, Davis K, Hurst JM, Johannigman JA, Frame SB. Dynamic helical computed tomography scan accurately detects hemorrhage in patients with pelvic fracture. Surgery. 2000 Oct;128(4):678-85. [PubMed: 11015102]

12.

Grotz MR, Allami MK, Harwood P, Pape HC, Krettek C, Giannoudis PV. Open pelvic fractures: epidemiology, current concepts of management and outcome. Injury. 2005 Jan;36(1):1-13. [PubMed: 15589906]

13.

Blackmore CC, Cummings P, Jurkovich GJ, Linnau KF, Hoffer EK, Rivara FP. Predicting major hemorrhage in patients with pelvic fracture. J Trauma. 2006 Aug;61(2):346-52. [PubMed: 16917449]

14.

Alton TB, Gee AO. Classifications in brief: young and burgess classification of pelvic ring injuries. Clin Orthop Relat Res. 2014 Aug;472(8):2338-42. [PMC free article: PMC4079881] [PubMed: 24867452]

15.

Young JW, Burgess AR, Brumback RJ, Poka A. Pelvic fractures: value of plain radiography in early assessment and management. Radiology. 1986 Aug;160(2):445-51. [PubMed: 3726125]

16.

Shlamovitz GZ, Mower WR, Bergman J, Chuang KR, Crisp J, Hardy D, Sargent M, Shroff SD, Snyder E, Morgan MT. How (un)useful is the pelvic ring stability examination in diagnosing mechanically unstable pelvic fractures in blunt trauma patients? J Trauma. 2009 Mar;66(3):815-20. [PubMed: 19276759]

17.

Coughenour J. Initial Evaluation and Management of the Injured Patient. Mo Med. 2018 Sep-Oct;115(5):429-433. [PMC free article: PMC6205268] [PubMed: 30385990]

18.

Ingram MD, Watson SG, Skippage PL, Patel U. Urethral injuries after pelvic trauma: evaluation with urethrography. Radiographics. 2008 Oct;28(6):1631-43. [PubMed: 18936026]

19.

Geeraerts T, Chhor V, Cheisson G, Martin L, Bessoud B, Ozanne A, Duranteau J. Clinical review: initial management of blunt pelvic trauma patients with haemodynamic instability. Crit Care. 2007;11(1):204. [PMC free article: PMC2151899] [PubMed: 17300738]

20.

Gonzalez E, Moore EE, Moore HB. Management of Trauma-Induced Coagulopathy with Thrombelastography. Crit Care Clin. 2017 Jan;33(1):119-134. [PMC free article: PMC5142763] [PubMed: 27894492]

21.

Friese RS, Malekzadeh S, Shafi S, Gentilello LM, Starr A. Abdominal ultrasound is an unreliable modality for the detection of hemoperitoneum in patients with pelvic fracture. J Trauma. 2007 Jul;63(1):97-102. [PubMed: 17622875]

22.

Guillamondegui OD, Pryor JP, Gracias VH, Gupta R, Reilly PM, Schwab CW. Pelvic radiography in blunt trauma resuscitation: a diminishing role. J Trauma. 2002 Dec;53(6):1043-7. [PubMed: 12478025]

23.

Verbeek DO, Burgess AR. Importance of Pelvic Radiography for Initial Trauma Assessment: An Orthopedic Perspective. J Emerg Med. 2016 Jun;50(6):852-8. [PubMed: 27133737]

24.

Barratt RC, Bernard J, Mundy AR, Greenwell TJ. Pelvic fracture urethral injury in males-mechanisms of injury, management options and outcomes. Transl Androl Urol. 2018 Mar;7(Suppl 1):S29-S62. [PMC free article: PMC5881191] [PubMed: 29644168]

25.

Dixon AN, Webb JC, Wenzel JL, Wolf JS, Osterberg EC. Current management of pelvic fracture urethral injuries: to realign or not? Transl Androl Urol. 2018 Aug;7(4):593-602. [PMC free article: PMC6127541] [PubMed: 30211049]

26.

Ben-Menachem Y, Coldwell DM, Young JW, Burgess AR. Hemorrhage associated with pelvic fractures: causes, diagnosis, and emergent management. AJR Am J Roentgenol. 1991 Nov;157(5):1005-14. [PubMed: 1927786]

27.

Agri F, Bourgeat M, Becce F, Moerenhout K, Pasquier M, Borens O, Yersin B, Demartines N, Zingg T. Association of pelvic fracture patterns, pelvic binder use and arterial angio-embolization with transfusion requirements and mortality rates; a 7-year retrospective cohort study. BMC Surg. 2017 Nov 09;17(1):104. [PMC free article: PMC5680776] [PubMed: 29121893]

28.

Chou CH, Wu YT, Fu CY, Liao CH, Wang SY, Bajani F, Hsieh CH. Hemostasis as soon as possible? The role of the time to angioembolization in the management of pelvic fracture. World J Emerg Surg. 2019;14:28. [PMC free article: PMC6567387] [PubMed: 31210779]

29.

Broadwell SR, Ray CE. Transcatheter embolization in pelvic trauma. Semin Intervent Radiol. 2004 Mar;21(1):23-35. [PMC free article: PMC3036204] [PubMed: 21331106]

30.

Miller PR, Moore PS, Mansell E, Meredith JW, Chang MC. External fixation or arteriogram in bleeding pelvic fracture: initial therapy guided by markers of arterial hemorrhage. J Trauma. 2003 Mar;54(3):437-43. [PubMed: 12634521]

31.

Balogh Z, Caldwell E, Heetveld M, D'Amours S, Schlaphoff G, Harris I, Sugrue M. Institutional practice guidelines on management of pelvic fracture-related hemodynamic instability: do they make a difference? J Trauma. 2005 Apr;58(4):778-82. [PubMed: 15824655]

32.

Shim H, Jang JY, Kim JW, Ryu H, Jung PY, Kim S, Kwon HY, Kim KM, Chung H, Bae KS. Effectiveness and postoperative wound infection of preperitoneal pelvic packing in patients with hemodynamic instability caused by pelvic fracture. PLoS One. 2018;13(11):e0206991. [PMC free article: PMC6218082] [PubMed: 30395596]

33.

Stannard A, Eliason JL, Rasmussen TE. Resuscitative endovascular balloon occlusion of the aorta (REBOA) as an adjunct for hemorrhagic shock. J Trauma. 2011 Dec;71(6):1869-72. [PubMed: 22182896]

34.

Jarvis S, Kelly M, Mains C, Corrigan C, Patel N, Carrick M, Lieser M, Banton K, Bar-Or D. A descriptive survey on the use of resuscitative endovascular balloon occlusion of the aorta (REBOA) for pelvic fractures at US level I trauma centers. Patient Saf Surg. 2019;13:43. [PMC free article: PMC6909568] [PubMed: 31857823]

35.

Moore LJ, Martin CD, Harvin JA, Wade CE, Holcomb JB. Resuscitative endovascular balloon occlusion of the aorta for control of noncompressible truncal hemorrhage in the abdomen and pelvis. Am J Surg. 2016 Dec;212(6):1222-1230. [PubMed: 28340927]

36.

Ribeiro Junior MAF, Feng CYD, Nguyen ATM, Rodrigues VC, Bechara GEK, de-Moura RR, Brenner M. The complications associated with Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA). World J Emerg Surg. 2018;13:20. [PMC free article: PMC5948672] [PubMed: 29774048]

37.

Gamberini E, Coccolini F, Tamagnini B, Martino C, Albarello V, Benni M, Bisulli M, Fabbri N, Hörer TM, Ansaloni L, Coniglio C, Barozzi M, Agnoletti V. Resuscitative Endovascular Balloon Occlusion of the Aorta in trauma: a systematic review of the literature. World J Emerg Surg. 2017;12:42. [PMC free article: PMC5575940] [PubMed: 28855960]

38.

Halawi MJ. Pelvic ring injuries: Surgical management and long-term outcomes. J Clin Orthop Trauma. 2016 Jan-Mar;7(1):1-6. [PMC free article: PMC4735567] [PubMed: 26908968]

39.

Calafi LA, Routt ML. Anterior pelvic external fixation: is there an optimal placement for the supra-acetabular pin? Am J Orthop (Belle Mead NJ). 2013 Dec;42(12):E125-7. [PubMed: 24471155]

40.

Lee C, Sciadini M. The Use of External Fixation for the Management of the Unstable Anterior Pelvic Ring. J Orthop Trauma. 2018 Sep;32 Suppl 6:S14-S17. [PubMed: 30095676]

41.

Gordon WT, Fleming ME, Johnson AE, Gurney J, Shackelford S, Stockinger ZT. Pelvic Fracture Care. Mil Med. 2018 Sep 01;183(suppl_2):115-117. [PubMed: 30189052]

42.

Pape HC, Griensven MV, Hildebrand FF, Tzioupis CT, Sommer KL, Krettek CC, Giannoudis PV., Epoff Study group. Systemic inflammatory response after extremity or truncal fracture operations. J Trauma. 2008 Dec;65(6):1379-84. [PubMed: 19077630]

43.

Hak DJ, Baran S, Stahel P. Sacral fractures: current strategies in diagnosis and management. Orthopedics. 2009 Oct;32(10) [PubMed: 19824583]

44.

Langford JR, Burgess AR, Liporace FA, Haidukewych GJ. Pelvic fractures: part 2. Contemporary indications and techniques for definitive surgical management. J Am Acad Orthop Surg. 2013 Aug;21(8):458-68. [PubMed: 23908252]

45.

Mehta S, Auerbach JD, Born CT, Chin KR. Sacral fractures. J Am Acad Orthop Surg. 2006 Nov;14(12):656-65. [PubMed: 17077338]

46.

Inaba K, McKenney M, Munera F, de Moya M, Lopez PP, Schulman CI, Habib FA. Cystogram follow-up in the management of traumatic bladder disruption. J Trauma. 2006 Jan;60(1):23-8. [PubMed: 16456432]

47.

Chung PH, Wessells H, Voelzke BB. Updated Outcomes of Early Endoscopic Realignment for Pelvic Fracture Urethral Injuries at a Level 1 Trauma Center. Urology. 2018 Feb;112:191-197. [PubMed: 29079211]

48.

Maxwell RA, Fabian TC. Current management of colon trauma. World J Surg. 2003 Jun;27(6):632-9. [PubMed: 12724824]

49.

Navsaria PH, Edu S, Nicol AJ. Civilian extraperitoneal rectal gunshot wounds: surgical management made simpler. World J Surg. 2007 Jun;31(6):1345-51. [PubMed: 17457641]

50.

Bosarge PL, Como JJ, Fox N, Falck-Ytter Y, Haut ER, Dorion HA, Patel NJ, Rushing A, Raff LA, McDonald AA, Robinson BR, McGwin G, Gonzalez RP. Management of penetrating extraperitoneal rectal injuries: An Eastern Association for the Surgery of Trauma practice management guideline. J Trauma Acute Care Surg. 2016 Mar;80(3):546-51. [PubMed: 26713970]

51.

Yoshihara H, Yoneoka D. Demographic epidemiology of unstable pelvic fracture in the United States from 2000 to 2009: trends and in-hospital mortality. J Trauma Acute Care Surg. 2014 Feb;76(2):380-5. [PubMed: 24398776]

52.

Vaidya R, Scott AN, Tonnos F, Hudson I, Martin AJ, Sethi A. Patients with pelvic fractures from blunt trauma. What is the cause of mortality and when? Am J Surg. 2016 Mar;211(3):495-500. [PubMed: 26781723]

53.

McDonald C, Firoozabadi R, Routt ML, Kleweno C. Complications Associated With Pelvic External Fixation. Orthopedics. 2017 Nov 01;40(6):e959-e963. [PubMed: 28934542]

54.

Bauer RM, Bastian PJ, Gozzi C, Stief CG. Postprostatectomy incontinence: all about diagnosis and management. Eur Urol. 2009 Feb;55(2):322-33. [PubMed: 18963418]

55.

Bananzadeh A, Hosseini SV, Izadpanah A, Izadi A, Khazraei H, Zamani M, Bahrami F. Outcomes of Implementation of Sacral Nerve Stimulation in Incontinent Patients in Shiraz. Adv Biomed Res. 2019;8:21. [PMC free article: PMC6446578] [PubMed: 31016179]

56.

Saldana Ruiz N, Kaiser AM. Fecal incontinence - Challenges and solutions. World J Gastroenterol. 2017 Jan 07;23(1):11-24. [PMC free article: PMC5221273] [PubMed: 28104977]