What is an adverse drug reaction ADR?

Revised: 22 May 2019

What is an adverse reaction?
What is meant by a common or rare adverse reaction?
How can I reduce the risk of adverse reactions?
Do adverse reactions always come on straight away?
Can I report an adverse reaction?
What suspected adverse reacions have been reported to CARM for my medicine(s)?

What is an adverse reaction?

An adverse drug reaction is an unexpected or unintended effect suspected to be caused by a medicine.

All medicines can cause adverse reactions in some people. Adverse reactions can range from headaches and upset stomach to more serious reactions such as liver or kidney injury. Some adverse reactions can be predicted, but some adverse reactions occur unexpectedly once many people take the medicine (eg, severe allergy). Most people take medicines without suffering any serious adverse reactions.

The best way to know what the possible adverse reactions might be is to read the medicine data sheet and/or consumer medicine information available on the Medsafe website.

Find a medicine data sheet or consumer medicine information

What is meant by a common or rare adverse reaction?

The chance of having an adverse reaction can be described as:

  • very common – this means that 1 in every 10 people taking the medicine are likely to have the adverse reaction
  • common – this means that between 1 in 10 and 1 in 100 people may be affected
  • uncommon – this means that between 1 in 100 and 1 in 1,000 people may be affected
  • rare – means that between 1 in 1,000 and 1 in 10,000 people may be affected
  • very rare – means that fewer than 1 in 10,000 people may be affected.

If an adverse reaction affects 1 person in every 10,000 people taking it, then 9,999 people out of 10,000 are not expected to have that adverse reaction.

How can I reduce the risk of adverse reactions?

  • Always take medicines as advised by a pharmacist, doctor or prescriber (eg, some medicines that can cause drowsiness are best taken at night).
  • If the medicine is bought always follow the directions on the package.
  • Never take medicines prescribed for other people.
  • Never take more medicine than recommended.
  • Be careful about mixing medicines. Some medicines, including complementary medicines and medicines bought in a pharmacy or supermarket should not be taken together. Patients taking prescription medicines should discuss with their pharmacist or doctor whether any medicines available over-the-counter should be avoided.
  • Be careful about taking medicines with alcohol or certain foods.
  • Patients should always tell their doctor if they are taking medicines bought in a pharmacy, supermarket (including complementary medicines and food supplements).

Do adverse reactions always come on straight away?

It depends on the medicine and the person.

In general, adverse reactions are most likely to happen soon after medicines are started or after increasing the dose. Other adverse reactions can occur after long term use. A patient's doctor can monitor for these reactions to prevent them occurring (eg, blood tests with warfarin).

Some adverse reactions will go away if the medicine is continued. However, any concerns should be discussed with a doctor or pharmacist.

You should not make any changes to your medicine or stop taking your medicine without first talking to your doctor or a pharmacist.

Can I report an adverse reaction?

Anyone living in New Zealand who thinks they may have experienced an adverse reaction due to a medicine can report this to the Centre for Adverse Reactions Monitoring (CARM). You do not need to be a healthcare professional to report an adverse reaction.

CARM informs Medsafe of any medicine related safety issues detected.

How can I report an adverse reaction to a medicine?

What suspected adverse reactions have been reported to CARM for my medicine(s)?

You can find information on reports of suspected adverse reactions to medicines reported to Centre for Adverse Reactions Monitoring (CARM) using the Suspected Medicine Adverse Reaction Search (SMARS).

Medsafe publishes communications about safety concerns to help consumers and healthcare professionals make informed decisions about their use of a medicine.

Search for reports of suspected adverse reactions to medicines (SMARS)

Find out more about Medsafe's safety communications

An adverse drug reaction (ADR) is a harmful, unintended result caused by taking medication.[1] ADRs may occur following a single dose or prolonged administration of a drug or result from the combination of two or more drugs. The meaning of this term differs from the term "side effect" because side effects can be beneficial as well as detrimental.[2] The study of ADRs is the concern of the field known as pharmacovigilance. An adverse drug event (ADE) refers to any unexpected and inappropriate occurrence at the time a drug is used, whether or not associated with the administration of the drug.[1] An ADR is a special type of ADE in which a causative relationship can be shown. ADRs are only one type of medication-related harm, as harm can also be caused by omitting to take indicated medications.[3]

What is an adverse drug reaction ADR?
Adverse drug reactionA rash due to a drug reaction

ADRs may be classified by e.g. cause and severity.

Cause

  • Type A: Augmented pharmacologic effects - dose dependent and predictable
Type A reactions, which constitute approximately 80% of adverse drug reactions, are usually a consequence of the drug's primary pharmacological effect (e.g. bleeding when using the anticoagulant warfarin) or a low therapeutic index of the drug (e.g. nausea from digoxin), and they are therefore predictable. They are dose-related and usually mild, although they may be serious or even fatal (e.g. intracranial bleeding from warfarin). Such reactions are usually due to inappropriate dosage, especially when drug elimination is impaired. The term 'side effects' is often applied to minor type A reactions.[4]
  • Type B: Idiosyncratic

Types A and B were proposed in the 1970s,[5] and the other types were proposed subsequently when the first two proved insufficient to classify ADRs.[6]

Seriousness

The U.S Food and Drug Administration defines a serious adverse event as one when the patient outcome is one of the following:[7]

  • Death
  • Life-threatening
  • Hospitalization (initial or prolonged)
  • Disability - significant, persistent, or permanent change, impairment, damage or disruption in the patient's body function/structure, physical activities or quality of life.
  • Congenital abnormality
  • Requires intervention to prevent permanent impairment or damage

Severity is a point on an arbitrary scale of intensity of the adverse event in question. The terms "severe" and "serious", when applied to adverse events, are technically very different. They are easily confused but can not be used interchangeably, requiring care in usage.

A headache is severe if it causes intense pain. There are scales like "visual analog scale" that help clinicians assess the severity. On the other hand, a headache is not usually serious (but may be in case of subarachnoid haemorrhage, subdural bleed, even a migraine may temporally fit criteria), unless it also satisfies the criteria for seriousness listed above.

Adverse effects may be local, i.e. limited to a certain location, or systemic, where medication has caused adverse effects throughout the systemic circulation.

For instance, some ocular antihypertensives cause systemic effects,[8] although they are administered locally as eye drops, since a fraction escapes to the systemic circulation.

 

Adverse drug reaction leading to hepatitis (drug-induced hepatitis) with granulomata. Other causes were excluded with extensive investigations. Liver biopsy. H&E stain.

As research better explains the biochemistry of drug use, fewer ADRs are Type B and more are Type A. Common mechanisms are:

  • Abnormal pharmacokinetics due to
    • genetic factors
    • comorbid disease states
  • Synergistic effects between either
    • a drug and a disease
    • two drugs
  • Antagonism effects between either
    • a drug and a disease
    • two drugs

Abnormal pharmacokinetics

Comorbid disease states

Various diseases, especially those that cause renal or hepatic insufficiency, may alter drug metabolism. Resources are available that report changes in a drug's metabolism due to disease states.[9]

The Medication Appropriateness Tool for Comorbid Health Conditions in Dementia[10] (MATCH-D) criteria warns that people with dementia are more likely to experience adverse effects, and that they are less likely to be able to reliably report symptoms.[11]

Genetic factors

Abnormal drug metabolism may be due to inherited factors of either Phase I oxidation or Phase II conjugation.[12][13] Pharmacogenomics is the study of the inherited basis for abnormal drug reactions.

Phase I reactions

Inheriting abnormal alleles of cytochrome P450 can alter drug metabolism. Tables are available to check for drug interactions due to P450 interactions.[14][15]

Inheriting abnormal butyrylcholinesterase (pseudocholinesterase) may affect metabolism of drugs such as succinylcholine[16]

Phase II reactions

Inheriting abnormal N-acetyltransferase which conjugated some drugs to facilitate excretion may affect the metabolism of drugs such as isoniazid, hydralazine, and procainamide.[15][16]

Inheriting abnormal thiopurine S-methyltransferase may affect the metabolism of the thiopurine drugs mercaptopurine and azathioprine.[15]

Interactions with other drugs

The risk of drug interactions is increased with polypharmacy.

Protein binding

These interactions are usually transient and mild until a new steady state is achieved.[17][18] These are mainly for drugs without much first-pass liver metabolism. The principal plasma proteins for drug binding are:[19]

  1. albumin
  2. α1-acid glycoprotein
  3. lipoproteins

Some drug interactions with warfarin are due to changes in protein binding.[19]

Cytochrome P450

Patients have abnormal metabolism by cytochrome P450 due to either inheriting abnormal alleles or due to drug interactions. Tables are available to check for drug interactions due to P450 interactions.[14]

Synergistic effects

An example of synergism is two drugs that both prolong the QT interval.

Causality assessment is used to determine the likelihood that a drug caused a suspected ADR. There are a number of different methods used to judge causation, including the Naranjo algorithm, the Venulet algorithm and the WHO causality term assessment criteria. Each have pros and cons associated with their use and most require some level of expert judgement to apply.[20] An ADR should not be labeled as 'certain' unless the ADR abates with a challenge-dechallenge-rechallenge protocol (stopping and starting the agent in question). The chronology of the onset of the suspected ADR is important, as another substance or factor may be implicated as a cause; co-prescribed medications and underlying psychiatric conditions may be factors in the ADR.[2]

Assigning causality to a specific agent often proves difficult, unless the event is found during a clinical study or large databases are used. Both methods have difficulties and can be fraught with error. Even in clinical studies some ADRs may be missed as large numbers of test individuals are required to find that adverse drug reaction. Psychiatric ADRs are often missed as they are grouped together in the questionnaires used to assess the population.[21][22]

Many countries have official bodies that monitor drug safety and reactions. On an international level, the WHO runs the Uppsala Monitoring Centre, and the European Union runs the European Medicines Agency (EMA). In the United States, the Food and Drug Administration (FDA) is responsible for monitoring post-marketing studies. In Canada, the Marketed Health Products Directorate of Health Canada is responsible for the surveillance of marketed health products. In Australia, the Therapeutic Goods Administration (TGA) conducts postmarket monitoring of therapeutic products. In the UK the Yellow Card Scheme was established in 1963.

A study by the Agency for Healthcare Research and Quality (AHRQ) found that in 2011, sedatives and hypnotics were a leading source for adverse drug events seen in the hospital setting. Approximately 2.8% of all ADEs present on admission and 4.4% of ADEs that originated during a hospital stay were caused by a sedative or hypnotic drug.[23] A second study by AHRQ found that in 2011, the most common specifically identified causes of adverse drug events that originated during hospital stays in the U.S. were steroids, antibiotics, opiates/narcotics, and anticoagulants. Patients treated in urban teaching hospitals had higher rates of ADEs involving antibiotics and opiates/narcotics compared to those treated in urban nonteaching hospitals. Those treated in private, nonprofit hospitals had higher rates of most ADE causes compared to patients treated in public or private, for-profit hospitals.[24]

MRH is common after hospital discharge in older adults, but methodological inconsistencies between studies and a paucity of data on risk factors limits clear understanding of the epidemiology. There was a wide range in incidence, from 0.4% to 51.2% of participants, and 35% to 59% of harm was preventable. Medication related harm incidence within 30 days after discharge ranged from 167 to 500 events per 1,000 individuals discharged (17–51% of individuals).[25]

In the U.S., females had a higher rate of ADEs involving opiates and narcotics than males in 2011, while male patients had a higher rate of anticoagulant ADEs. Nearly 8 in 1,000 adults aged 65 years or older experienced one of the four most common ADEs (steroids, antibiotics, opiates/narcotics, and anticoagulants) during hospitalization.[24] A study showed that 48% of patients had an adverse drug reaction to at least one drug, and pharmacist involvement helps to pick up adverse drug reactions.[26]

In 2012, McKinsey & Company concluded that the cost of the 50-100 million preventable error-related adverse drug events would be between US$18–115 billion.[27][28]

  • Alleged problems in the drug approval process
  • Classification of Pharmaco-Therapeutic Referrals
  • Drug therapy problems
  • EudraVigilance (European Union)
  • History of pharmacy
  • Iatrogenesis
  • Lethal dose
  • List of withdrawn drugs
  • Paradoxical reaction
  • Polypharmacy
  • Toxicity
  • Toxicology
  • The Medical Letter on Drugs and Therapeutics
  • Yellow Card Scheme (UK)

  1. ^ a b "Guideline For Good Clinical Practice". International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. 10 June 1996. p. 2. Retrieved 16 April 2022.
  2. ^ a b Nebeker JR, Barach P, Samore MH (May 2004). "Clarifying adverse drug events: a clinician's guide to terminology, documentation, and reporting". Annals of Internal Medicine. 140 (10): 795–801. doi:10.7326/0003-4819-140-10-200405180-00017. PMID 15148066. S2CID 32296353.
  3. ^ Bose KS, Sarma RH (October 1975). "Delineation of the intimate details of the backbone conformation of pyridine nucleotide coenzymes in aqueous solution". Biochemical and Biophysical Research Communications. 66 (4): 1173–9. doi:10.1016/0006-291X(75)90482-9. PMID 2.
  4. ^ Ritter, J M (2008). A Textbook of Clinical Pharmacology and Therapeutics. Great Britain. p. 62. ISBN 978-0-340-90046-8.
  5. ^ Rawlins MD, Thompson JW. Pathogenesis of adverse drug reactions. In: Davies DM, ed. Textbook of adverse drug reactions. Oxford: Oxford University Press, 1977:10.
  6. ^ Aronson JK. Drug therapy. In: Haslett C, Chilvers ER, Boon NA, Colledge NR, Hunter JAA, eds. Davidson's principles and practice of medicine 19th ed. Edinburgh: Elsevier Science, 2002:147-
  7. ^ "MedWatch - What Is A Serious Adverse Event?". Food and Drug Administration. Archived from the original on 29 September 2007. Retrieved 18 September 2007.
  8. ^ Rang, H. P. (2003). Pharmacology. Edinburgh: Churchill Livingstone. ISBN 978-0-443-07145-4. Page 146
  9. ^ "Clinical Drug Use". Archived from the original on 1 November 2007. Retrieved 18 September 2007.
  10. ^ "MATCH-D Medication Appropriateness Tool for Comorbid Health conditions during Dementia". www.match-d.com.au. Retrieved 1 June 2019.
  11. ^ Page AT, Potter K, Clifford R, McLachlan AJ, Etherton-Beer C (October 2016). "Medication appropriateness tool for co-morbid health conditions in dementia: consensus recommendations from a multidisciplinary expert panel". Internal Medicine Journal. 46 (10): 1189–1197. doi:10.1111/imj.13215. PMC 5129475. PMID 27527376.
  12. ^ Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W (November 2001). "Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review". JAMA. 286 (18): 2270–9. doi:10.1001/jama.286.18.2270. PMID 11710893.
  13. ^ Goldstein DB (February 2003). "Pharmacogenetics in the laboratory and the clinic". The New England Journal of Medicine. 348 (6): 553–6. doi:10.1056/NEJMe020173. PMID 12571264.
  14. ^ a b "Drug-Interactions.com". Archived from the original on 30 August 2007. Retrieved 18 September 2007.
  15. ^ a b c Weinshilboum R (February 2003). "Inheritance and drug response". The New England Journal of Medicine. 348 (6): 529–37. doi:10.1056/NEJMra020021. PMID 12571261.
  16. ^ a b Evans WE, McLeod HL (February 2003). "Pharmacogenomics--drug disposition, drug targets, and side effects". The New England Journal of Medicine. 348 (6): 538–49. doi:10.1056/NEJMra020526. PMID 12571262.
  17. ^ DeVane CL (2002). "Clinical significance of drug binding, protein binding, and binding displacement drug interactions". Psychopharmacology Bulletin. 36 (3): 5–21. PMID 12473961.
  18. ^ Benet LZ, Hoener BA (March 2002). "Changes in plasma protein binding have little clinical relevance". Clinical Pharmacology and Therapeutics. 71 (3): 115–21. doi:10.1067/mcp.2002.121829. PMID 11907485. S2CID 6948454.OVID full text summary table at OVID
  19. ^ a b Sands CD, Chan ES, Welty TE (October 2002). "Revisiting the significance of warfarin protein-binding displacement interactions". The Annals of Pharmacotherapy. 36 (10): 1642–4. doi:10.1345/aph.1A208. PMID 12369572. S2CID 20855578. Archived from the original on 7 September 2008. Retrieved 18 September 2007.
  20. ^ Davies EC, Rowe PH, James S, et al. (2011). "An Investigation of Disagreement in Causality Assessment of Adverse Drug Reactions". Pharm Med. 25 (1): 17–24. doi:10.1007/bf03256843. S2CID 37301370. Archived from the original on 1 July 2012. Retrieved 2 June 2011.
  21. ^ Holvey C, Connolly A, Taylor D (August 2010). "Psychiatric side effects of non-psychiatric drugs". British Journal of Hospital Medicine. 71 (8): 432–6. doi:10.12968/hmed.2010.71.8.77664. PMID 20852483.
  22. ^ Otsubo T (2003). "[Psychiatric complications of medicines]". Ryoikibetsu Shokogun Shirizu (40): 369–73. PMID 14626141.
  23. ^ Weiss AJ, Elixhauser A (July 2013). "Origin of Adverse Drug Events in U.S. Hospitals, 2011" (HCUP Statistical Brief #158). Rockville, MD: Agency for Healthcare Research and Quality. PMID 24228291.
  24. ^ a b Weiss A.J.; Elixhauser A. (October 2013). "Characteristics of Adverse Drug Events Originating During the Hospital Stay, 2011" (HCUP Statistical Brief #164). Rockville, MD: Agency for Healthcare Research and Quality. Archived from the original on 24 December 2016. Retrieved 11 November 2013.
  25. ^ Parekh, Nikesh; Ali, Khalid; Page, Amy; Roper, Tom; Rajkumar, Chakravarthi (September 2018). "Incidence of Medication-Related Harm in Older Adults After Hospital Discharge: A Systematic Review". Journal of the American Geriatrics Society. 66 (9): 1812–1822. doi:10.1111/jgs.15419. PMID 29972591. S2CID 49678401.
  26. ^ Yeung EY (October 2015). "Adverse drug reactions: a potential role for pharmacists". The British Journal of General Practice. 65 (639): 511.1–511. doi:10.3399/bjgp15X686821. PMC 4582849. PMID 26412813.
  27. ^ http://www.gs1.org/docs/healthcare/McKinsey_Healthcare_Report_Strength_in_Unity.pdf[bare URL PDF]
  28. ^ Ebel, Thomas; George, Katy; Larsen, Erik; Neal, Everett; Shah, Ketan; Shi, David (October 2012). "Strength in unity: The promise of global standards in healthcare" (PDF). McKinsey & Company. p. 31. Retrieved 16 April 2022.{{cite web}}: CS1 maint: url-status (link)

  • Incidence of adverse drug reactions in human immune deficiency virus-positive patients using highly active antiretroviral therapy PMC 3312730

Retrieved from "https://en.wikipedia.org/w/index.php?title=Adverse_drug_reaction&oldid=1108504572"