What volume of hydrogen gas is produced at STP when 3.25 g of zinc reacts with excess dilute HCl?

Chemistry

WAEC 2008


Consider the reaction represented by the following equation: Zn(s) + 2HCI(aq) → ZnCI2(aq) + H2(g) what volume of hydrogen gas is produced at s.t.p. when 3.25 g of zinc reacts with excess dilute HCI? [Zn = 65, Molar gas volume at s.t.p. = 22.4 dm-3]

  • A. 1.12 dm3
  • B. 2.24dm3
  • C. 4.48dm3
  • D. 8.96dm3

No official explanation is available for this question at this time. Please check contributions posted by others below. If you can provide an explanation to help other student learn, please click here


Report an Error Ask A Question Download App

Text Solution

Solution : Given that, mass of Zn=32.65g <br> 1 mole of gas occupies =22.7L volume at STP <br> Atomic mass of Zn=65.3u <br> The given equation is <br> `Zn+2HClrarrZnCl_(2)+H_(2)` <br> `65.3g 1"mol"=22.7L` at STP <br> From the above equation it is clear that <br> `65.3g Zn`. when reacts with HCl produces `=22.7L "of" H_(2)` at STP <br> `therefore 32.65gZn`. when reacts with HCl, will produce `=(22.7xx32.65)/(65.3)=11.35L` of `H_(2)` at STP.

 With an understanding of the ideal gas laws, it is now possible to apply these principles to chemical stoichiometry problems. For example, zinc metal and hydrochloric acid (hydrogen chloride dissolved in water) react to form zinc (II) chloride and hydrogen gas according to the equation shown below:

2 HCl (aq) + Zn (s) → ZnCl2 (aq) + H2 (g)

A sample of pure zinc with a mass of 5.98 g is reacted with excess hydrochloric acid and the (dry) hydrogen gas is collected at 25.0 ˚C and 742 mm Hg. What volume of hydrogen gas would be produced?

This is a “single state” problem, so we can solve it using the ideal gas law, PV = nRT. In order to find the volume of hydrogen gas (V), we need to know the number of moles of hydrogen that will be produced by the reaction. Our stoichiometry is simply one mole of hydrogen per mole of zinc, so we need to know the number of moles of zinc that are present in 5.98 grams of zinc metal. The temperature is given in centigrade, so we need to convert into Kelvin, and we also need to convert mm Hg into atm.

Conversions:

\[25.0\; C+273=298\; K \nonumber \]

\[(742\; mm\; Hg)\times \left ( \frac{1\; atm}{760\; mm\; Hg} \right )=0.976\; atm \nonumber \]

\[(5.98\; g\; Zn)\times \left ( \frac{1.00\; mol}{65.39\; g\; Zn} \right )=0.0915\; mol \nonumber \]

Substituting:

\[PV=nRT \nonumber \]

\[(0.976\; atm)\times V=(0.0915\; mol)(0.0821\; L\; atm\; mol^{-1}K^{-1})(298\; K) \nonumber \]

\[V=\frac{(0.0915\; mol)(0.0821\; L\; atm\; mol^{-1}K^{-1})(298\; K)}{(0.976\; atm)}=2.29\; L \nonumber \]

We can also use the fact that one mole of a gas occupies 22.414 L at STP in order to calculate the number of moles of a gas that is produced in a reaction. For example, the organic molecule ethane (CH3CH3) reacts with oxygen to give carbon dioxide and water according to the equation shown below:

2 CH3CH3 (g) + 7 O2 (g) → 4 CO2 (g) + 6 H2O (g)

An unknown mass of ethane is allowed to react with excess oxygen and the carbon dioxide produced is separated and collected. The carbon dioxide collected is found to occupy 11.23 L at STP; what mass of ethane was in the original sample?

Because the volume of carbon dioxide is measured at STP, the observed value can be converted directly into moles of carbon dioxide by dividing by 22.414 L mol–1. Once moles of carbon dioxide are known, the stoichiometry of the problem can be used to directly give moles of ethane (molar mass 30.07 g mol-1), which leads directly to the mass of ethane in the sample.

\[(11.23\; L\; CO_{2})\times \left ( \frac{1\; mol}{22.414\; L} \right )=0.501\; mol\; CO_{2} \nonumber \]

Reaction stoichiometry:

\[(0.501\; mol\; CO_{2})\times \left ( \frac{2\; mol\; CH_{3}CH_{3}}{4\; mol\; CO_{2}} \right )=0.250\; mol\; CH_{3}CH_{3} \nonumber \]

The ideal gas laws allow a quantitative analysis of whole spectrum of chemical reactions. When you are approaching these problems, remember to first decide on the class of the problem:

  • If it is a “single state” problem (a gas is produced at a single, given, set of conditions), then you want to use PV = nRT.
  • If it is a “two state” problem (a gas is changed from one set of conditions to another) you want to use \[\frac{P_{1}V_{1}}{n_{1}T_{1}}=\frac{P_{2}V_{2}}{n_{2}T_{2}} \nonumber \]
  • If the volume of gas is quoted at STP, you can quickly convert this volume into moles with by dividing by 22.414 L mol-1.

Once you have isolated your approach ideal gas law problems are no more complex that the stoichiometry problems we have addressed in earlier chapters.

  1. An automobile air bag requires about 62 L of nitrogen gas in order to inflate. The nitrogen gas is produced by the decomposition of sodium azide, according to the equation shown below

2 NaN3 (s) → 2 Na (s) + 3 N2 (g)

What mass of sodium azide is necessary to produce the required volume of nitrogen at 25 ˚C and 1 atm?

  1. When Fe2O3 is heated in the presence of carbon, CO2 gas is produced, according to the equation shown below. A sample of 96.9 grams of Fe2O3 is heated in the presence of excess carbon and the CO2 produced is collected and measured at 1 atm and 453 K. What volume of CO2 will be observed?

2 Fe2O3(s) + 3 C (s) → 4 Fe (s) + 3 CO2 (g)

  1. The reaction of zinc and hydrochloric acid generates hydrogen gas, according to the equation shown below. An unknown quantity of zinc in a sample is observed
    to produce 7.50 L of hydrogen gas at a temperature of 404 K and a pressure of 1.75 atm. How many moles of zinc were in the sample?

Zn (s) + 2 HCl (aq) → ZnCl2 (aq) + H2 (g)

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

Consider the reaction represented by the following equation:
Zn(s) + 2HCl(aq) → ZnCl2(aq) + H2(g) What volume of hydrogen gas is produced at s.t.p. when 3.25g of zinc reacts with excess dilute HCl?

[Zn = 65, Molar gas volume at s.t.p = 22.4dm3]

Answer: A


To see detailed solution to this question and thousands of other questions offline, download TestDriller SSCE. Practice rigorously for WASSCE, enjoy educational games, get chief examiners' reports, summary of WAEC literature books, compete with your peers, win prizes and more.

Consider the reaction represented by the following equation:

Zn(s) + 2HCI(aq) → ZnCI2(aq) + H2(g)

What volume of hydrogen gas is produced at s.t.p. when 3.25 g of zinc reacts with excess dilute HCI? [Zn = 65, Molar gas volume at s.t.p. = 22.4 dm-³]

A. 1.12 dm³ B. 2.24 dm³ C. 4.48 dm³

D. 8.96 dm³

Correct Answer: Option A

A. 1.12 dm3

Postingan terbaru

LIHAT SEMUA