What cloud model involves providing applications through an online user interface providing for compatibility with a multitude of O?

  1. RightScale (2019) RightScale 2019 State of the Cloud Report. https://info.flexera.com/SLO-CM-WP-State-of-the-Cloud-2019. Accessed 12 Oct 2019.

  2. Ranjan R, Benatallah B, Dustdar S, Papazoglou MP (2015) Cloud resource orchestration programming: Overview, issues, and directions. IEEE Internet Comput 19(5):46–56. https://doi.org/10.1109/MIC.2015.20.

    Article  Google Scholar 

  3. Weerasiri D, Barukh MC, Benatallah B, Sheng QZ, Ranjan R (2017) A Taxonomy and Survey of Cloud Resource Orchestration Techniques. ACM Comput Surv 50(2):26–12641. https://doi.org/10.1145/3054177.

    Article  Google Scholar 

  4. Baur D, Seybold D, Griesinger F, Tsitsipas A, Hauser CB, Domaschka J (2015) Cloud Orchestration Features: Are Tools Fit for Purpose?, In: 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC), 95–101. https://doi.org/10.1109/UCC.2015.25.

  5. Bousselmi K, Brahmi Z, Gammoudi MM (2014) Cloud services orchestration: A comparative study of existing approaches In: 28th International Conference on Advanced Information Networking and Applications Workshops, 410–416. https://doi.org/10.1109/WAINA.2014.72.

  6. Grozev N, Buyya R (2014) Inter-cloud architectures and application brokering: taxonomy and survey. Softw Pract Experience 44(3):369–390. https://doi.org/10.1002/spe.2168.

    Article  Google Scholar 

  7. Ferry N, Rossini A, Chauvel F, Morin B, Solberg A (2013) Towards Model-Driven Provisioning, Deployment, Monitoring, and Adaptation of Multi-cloud Systems In: IEEE Sixth International Conference on Cloud Computing, 887–894. https://doi.org/10.1109/CLOUD.2013.133.

  8. Petcu D (2014) Consuming resources and services from multiple clouds. J Grid Comput 12(2):321–345. https://doi.org/10.1007/s10723-013-9290-3.

    Article  Google Scholar 

  9. Petcu D, Vasilakos A (2014) Portability in Clouds: Approaches and Research Opportunities. Scalable Comput Pract Experience 15(3):251–270. https://doi.org/10.12694/scpe.v15i3.1019.

    Google Scholar 

  10. Ferry N, Rossini A (2018) CloudMF: Model-Driven Management of Multi-Cloud Applications. ACM Trans Internet Technol 18(2):16–24. https://doi.org/10.1145/3125621.

    Article  Google Scholar 

  11. Ferrer AJ (2016) Inter-cloud research: Vision for 2020. Procedia Comput Sci 97:140–143. https://doi.org/10.1016/j.procs.2016.08.292.

    Article  Google Scholar 

  12. Buyya R, Srirama SN, Casale G, Calheiros R, Simmhan Y, Varghese B, Gelenbe E, Javadi B, Vaquero LM, Netto MAS, Toosi AN, Rodriguez MA, Llorente IM, Vimercati SDCD, Samarati P, Milojicic D, Varela C, Bahsoon R, Assuncao MDD, Rana O, Zhou W, Jin H, Gentzsch W, Zomaya AY, Shen H (2018) A Manifesto for Future Generation Cloud Computing: Research Directions for the Next Decade. ACM Comput Surv 51(5):105–110538. https://doi.org/10.1145/3241737.

    Google Scholar 

  13. Lewis GA (2013) Role of standards in cloud-computing interoperability In: 46th Hawaii International Conference on System Sciences, 1652–1661. https://doi.org/10.1109/HICSS.2013.470.

  14. Badger L, Bohn R, Chandramouli R, Grance T, Karygiannis T, Patt-Corner R, Voas E (2010) Cloud Computing Use Cases. https://www.nist.gov/itl/use-cases. Accessed 12 Oct 2019.

  15. Ahronovitz M, et al. (2010) Cloud Computing Use Cases White Paper Version 4.0. http://www.cloud-council.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf. Accessed 12 Oct 2019.

  16. Distributed Management Task Force (2010) Use Cases and Interactions for Managing Clouds. https://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0103_1.0.0.pdf. Accessed 12 Oct 2019.

  17. Zhang Z, Wu C, Cheung DWL (2013) A survey on cloud interoperability: Taxonomies, standards, and practice. SIGMETRICS Perform Eval Rev 40(4):13–22. https://doi.org/10.1145/2479942.2479945.

    Article  Google Scholar 

  18. Stravoskoufos K, Preventis A, Sotiriadis S, Petrakis EGM (2014) A Survey on Approaches for Interoperability and Portability of Cloud Computing Services In: Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER2014), 112–117. https://doi.org/10.5220/0004856401120117.

  19. García ÁL, del Castillo EF, Fernández PO (2016) Standards for enabling heterogeneous IaaS cloud federations. Comput Stand Interfaces 47:19–23. https://doi.org/10.1016/j.csi.2016.02.002.

    Article  Google Scholar 

  20. Gartner (2018) Competitive Landscape: Cloud Service Brokerage. https://www.gartner.com/en/documents/3889023/competitive-landscape-cloud-service-brokerage. Accessed 12 Oct 2019.

  21. Liu F, Tong J, Mao J, Bohn RB, Messina JV, Badger ML, Leaf DM (2011) NIST Cloud Computing Reference Architecture. https://www.nist.gov/publications/nist-cloud-computing-reference-architecture. Accessed 12 Oct 2019.

  22. Elhabbash A, Samreen F, Hadley J, Elkhatib Y (2019) Cloud brokerage: A systematic survey. ACM Comput Surv 51(6):119–111928. https://doi.org/10.1145/3274657.

    Article  Google Scholar 

  23. Bernstein D, Ludvigson E, Sankar K, Diamond S, Morrow M (2009) Blueprint for the Intercloud - Protocols and Formats for Cloud Computing Interoperability In: Proceedings of the 2009 Fourth International Conference on Internet and Web Applications and Services. ICIW ’09, 328–336. https://doi.org/10.1109/ICIW.2009.55.

  24. Global Inter-cloud Technology Forum (2010) Use Cases and Functional Requirements for Inter-Cloud Computing: A white paper. http://www.gictf.jp/doc/GICTF_Whitepaper_20100809.pdf. Accessed 12 Oct 2019.

  25. Petcu D (2013) Multi-cloud: Expectations and current approaches In: Proceedings of the 2013 International Workshop on Multi-cloud Applications and Federated Clouds. MultiCloud ’13, 1–6.. ACM, New York. https://doi.org/10.1145/2462326.2462328.

    Google Scholar 

  26. Toosi AN, Calheiros RN, Buyya R (2014) Interconnected cloud computing environments: Challenges, taxonomy, and survey. ACM Comput Surv 47(1):7–1747. https://doi.org/10.1145/2593512.

    Article  Google Scholar 

  27. Nogueira E, Moreira A, Lucrédio D, Garcia V, Fortes R (2016) Issues on developing interoperable cloud applications: definitions, concepts, approaches, requirements, characteristics and evaluation models. J Softw Eng Res Dev 4(1):7. https://doi.org/10.1186/s40411-016-0033-6.

    Article  Google Scholar 

  28. Kaur K, Sharma DS, Kahlon DKS (2017) Interoperability and portability approaches in inter-connected clouds: A review. ACM Comput Surv 50(4):49–14940. https://doi.org/10.1145/3092698.

    Article  Google Scholar 

  29. Bellendorf J, Mann ZÁ (2018) Cloud Topology and Orchestration Using TOSCA: A Systematic Literature Review. In: Kritikos K, Plebani P, de Paoli F (eds)Service-Oriented and Cloud Computing, 207–215. https://doi.org/10.1007/978-3-319-99819-0_16.

  30. Domaschka J, Griesinger F, Baur D, Rossini A (2015) Beyond Mere Application Structure Thoughts on the Future of Cloud Orchestration Tools. Procedia Comput Sci 68:151–162. https://doi.org/10.1016/j.procs.2015.09.231.

    Article  Google Scholar 

  31. Khoshkbarforoushha A, Wang M, Ranjan R, Wang L, Alem L, Khan SU, Benatallah B (2016) Dimensions for evaluating cloud resource orchestration frameworks. Computer 49(2):24–33. https://doi.org/10.1109/MC.2016.56.

    Article  Google Scholar 

  32. Clusters of European Projects on Cloud (2015) Inter-cloud Challenges, Expectations and Issues Cluster Position Paper: Initial Research Roadmap and Project’s Classification. https://eucloudclusters.wordpress.com/future-cloud. Accessed 12 Oct 2019.

  33. Clusters of European Projects on Cloud (2016) Inter-cloud Challenges, Expectations and Issues Cluster Position Paper: Research Roadmap Update. https://eucloudclusters.wordpress.com/future-cloud. Accessed 12 Oct 2019.

  34. Clusters of European Projects on Cloud (2017) Future Cloud Cluster Vision for 2030. https://eucloudclusters.wordpress.com/future-cloud. Accessed 12 Oct 2019.

  35. GigaSpaces Research CloudifyTeam (2016) Cloud Management in the Enterprise - An Overview of Orchestration vs. PaaS vs. CMP. https://cloudify.co/blog/cloud-management-roundup-orchestration-paas-cmp/. Accessed 12 Oct 2019.

  36. OASIS (2013) Topology and Orchestration Specification for Cloud Applications Version 1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html. Accessed 6 July 2020.

  37. Buyya R, Vecchiola C, Selvi ST (2013) Chapter 10 - Cloud Applications. In: Buyya R, Vecchiola C, Selvi ST (eds)Mastering Cloud Computing, 353–371.. Morgan Kaufmann, Boston. https://doi.org/10.1016/B978-0-12-411454-8.00010-3.

    Chapter  Google Scholar 

  38. Costache S, Dib D, Parlavantzas N, Morin C (2017) Resource management in cloud platform as a service systems: Analysis and opportunities. J Syst Softw 132:98–118. https://doi.org/10.1016/j.jss.2017.05.035.

    Article  Google Scholar 

  39. Kolb S, Wirtz G (2014) Towards Application Portability in Platform as a Service In: IEEE 8th International Symposium on Service Oriented System Engineering, 218–229. https://doi.org/10.1109/SOSE.2014.26.

  40. Oberle K, Fisher M (2010) ETSI CLOUD - Initial Standardization Requirements for Cloud Services In: Proceedings of the 7th International Conference on Economics of Grids, Clouds, Systems, and Services. GECON’10, 105–115.. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15681-6_8.

    Chapter  Google Scholar 

  41. OASIS (2014) Cloud Application Management for Platforms Version 1.1. http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html. Accessed 12 Oct 2019.

  42. Soltesz S, Pötzl H, Fiuczynski ME, Bavier A, Peterson L (2007) Container-based Operating System Virtualization: A Scalable, High-performance Alternative to Hypervisors In: Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007. EuroSys ’07, 275–287.. ACM, New York. https://doi.org/10.1145/1272996.1273025.

    Chapter  Google Scholar 

  43. Singh S, Singh N (2016) Containers & Docker: Emerging roles & future of Cloud technology In: 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), 804–807. https://doi.org/10.1109/ICATCCT.2016.7912109.

  44. Komarek A, Pavlik J, Sobeslav V (2017) Hybrid System Orchestration with TOSCA and Salt. J Eng Appl Sci 12(9):2396–2401. https://doi.org/10.36478/jeasci.2017.2396.2401.

    Google Scholar 

  45. OpenStack (2016) OpenStack Heat. https://wiki.openstack.org/wiki/Heat. Accessed 12 Oct 2019.

  46. Cloudify (2019) Cloudify. http://cloudify.co/. Accessed 12 Oct 2019.

  47. The Apache Software Foundation (2016) The Apache Brooklyn project. https://brooklyn.apache.org/. Accessed 12 Oct 2019.

  48. Apache (2015) Apache Stratos. https://stratos.apache.org/. Accessed 12 Oct 2019.

  49. FastConnect (2018) Alien4Cloud. https://alien4cloud.github.io. Accessed 12 Oct 2019.

  50. HashiCorp (2019) HashiCorp Terraform. https://www.terraform.io/. Accessed 12 Oct 2019.

  51. Amazon (2016) Amazon CloudFormation. https://aws.amazon.com/cloud-for-ma-tion/. Accessed 12 Oct 2019.

  52. Baur D, Domaschka J (2016) Experiences from building a cross-cloud orchestration tool In: Proceedings of the 3rd Workshop on CrossCloud Infrastructures & Platforms. CrossCloud ’16, 4–146. https://doi.org/10.1145/2904111.2904116.

  53. Baur D, Seybold D, Griesinger F, Masata H, Domaschka J (2018) A Provider-Agnostic Approach to Multi-cloud Orchestration Using a Constraint Language In: 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), 173–182. https://doi.org/10.1109/CCGRID.2018.00032.

  54. Pham LM, Tchana A, Donsez D, de Palma N, Zurczak V, Gibello P (2015) Roboconf: A Hybrid Cloud Orchestrator to Deploy Complex Applications In: IEEE 8th International Conference on Cloud Computing, 365–372. https://doi.org/10.1109/CLOUD.2015.56.

  55. Salomoni D, Campos I, Gaido L, et al. (2016) Indigo-datacloud: foundations and architectural description of a platform as a service oriented to scientific computing. CoRR abs/1603.09536. http://arxiv.org/abs/1603.09536. Accessed 6 July 2020.

  56. Salomoni D, Campos I, Gaido L, et al. (2018) INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures. J Grid Comput 16(3):381–408. https://doi.org/10.1007/s10723-018-9453-3.

    Article  Google Scholar 

  57. Kiss T, Kacsuk P, Kovacs J, Rakoczi B, Hajnal A, Farkas A, Gesmier G, Terstyanszky G (2019) MiCADO—Microservice-based Cloud Application-level Dynamic Orchestrator. Futur Gener Comput Syst 94:937–946. https://doi.org/10.1016/j.future.2017.09.050.

    Article  Google Scholar 

  58. Ardagna D, Di Nitto E, Mohagheghi P, Mosser S, Ballagny C, D’Andria F, Casale G, Matthews P, Nechifor C, Petcu D, Gericke A, Sheridan C (2012) MODAClouds: A model-driven approach for the design and execution of applications on multiple Clouds In: 4th International Workshop on Modeling in Software Engineering (MISE), 50–56. https://doi.org/10.1109/MISE.2012.6226014.

  59. Nitto ED, Matthews P, Petcu D, Solberg A (2017) Model-Driven Development and Operation of Multi-Cloud Applications: The MODAClouds Approach. https://doi.org/10.1007/978-3-319-46031-4.

  60. Brogi A, Carrasco J, Cubo J, D’Andria F, Ibrahim A, Pimentel E, Soldani J (2014) SeaClouds: Seamless adaptive multi-cloud management of service-based applications In: 17th Conferencia Iberoamericana en Software Engineering (CIbSE 2014), 95–108.. Curran Associates, Inc., Pucon.

    Google Scholar 

  61. Brogi A, Fazzolari M, Ibrahim A, Soldani J, Wang P, Carrasco J, Cubo J, Durán F, Pimentel E, Di Nitto E, D’Andria F (2015) Adaptive management of applications across multiple clouds: The SeaClouds Approach. CLEI Electron J 18:2–2. https://doi.org/10.19153/cleiej.18.1.1.

    Google Scholar 

  62. University of Ulm (2015) Cloudiator. http://cloudiator.org/. Accessed 12 Oct 2019.

  63. Linagora (2013) Roboconf. http://roboconf.net. Accessed 12 Oct 2019.

  64. Caballer M, Zala S, García ÁL, Moltó G, Fernández PO, Velten M (2018) Orchestrating Complex Application Architectures in Heterogeneous Clouds. J Grid Comput 16(1):3–18. https://doi.org/10.1007/s10723-017-9418-y.

    Article  Google Scholar 

  65. INDIGO consortium (2017) The INDIGO-DataCloud project. https://www.indigo-datacloud.eu/. Accessed 12 Oct 2019.

  66. COLA consortium (2017) The COLA Project. https://project-cola.eu/. Accessed 12 Oct 2019.

  67. Kovács J, Kacsuk P (2018) Occopus: a multi-cloud orchestrator to deploy and manage complex scientific infrastructures. J Grid Comput 16(1):19–37. https://doi.org/10.1007/s10723-017-9421-3.

    Article  Google Scholar 

  68. MODAClouds consortium (2012) The MODAClouds project. http://multiclouddevops.com/. Accessed 12 Oct 2019.

  69. SeaClouds consortium (2013) The SeaClouds project. http://www.seaclouds-project.eu/. Accessed 12 Oct 2019.

  70. Petcu D, Macariu G, Panica S, Crăciun C (2013) Portable Cloud applications—From theory to practice. Futur Gener Comput Syst 29(6):1417–1430. https://doi.org/10.1016/j.future.2012.01.009.

    Article  Google Scholar 

  71. Petcu D, Martino BD, Venticinque S, Rak M, Máhr T, Lopez GE, Brito F, Cossu R, Stopar M, Šperka S, Stankovski V (2013) Experiences in building a mOSAIC of clouds. J Cloud Comput Adv Syst Appl 2(1):12. https://doi.org/10.1186/2192-113X-2-12.

    Article  Google Scholar 

  72. mOSAIC consortium (2010) The mOSAIC project. http://www.mosaic-cloud.eu/. Accessed 12 Oct 2019.

  73. DAndria F, Bocconi S, Cruz JG, Ahtes J, Zeginis D (2012) Cloud4SOA: Multi-cloud Application Management Across PaaS Offerings In: 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 407–414. https://doi.org/10.1109/SYNASC.2012.65.

  74. Kamateri E, Loutas N, Zeginis D, Ahtes J, D’Andria F, Bocconi S, Gouvas P, Ledakis G, Ravagli F, Lobunets O, Tarabanis KA (2013) Cloud4SOA: A Semantic-Interoperability PaaS Solution for Multi-cloud Platform Management and Portability. In: Lau K-K, Lamersdorf W, Pimentel E (eds)Service-Oriented and Cloud Computing, ESOCC 2013, 64–78. https://doi.org/10.1007/978-3-642-40651-5_6.

  75. Cloud, 4SOA consortium (2010) The Cloud4SOA project. http://www.cloud4soa.eu/. Accessed 12 Oct 2019.

  76. BEACON consortium (2015) The BEACON project: Enabling Federated Cloud Networking. http://www.beacon-project.eu/. Accessed 12 Oct 2019.

  77. Celesti A, Levin A, Massonet P, Schour L, Villari M (2016) Federated networking services in multiple openstack clouds, 338–352. https://doi.org/10.1007/978-3-319-33313-7_26.

  78. ATMOSPHERE consortium (2017) The ATMOSPHERE project: Adaptive, Trustworthy, Manageable, Orchestrated, Secure, Privacy-assuring Hybrid, Ecosystem for Resilient Cloud Computing. https://www.atmosphere-eubrazil.eu/. Accessed 12 Oct 2019.

  79. Castañeda IA, Blanquer I, de Alfonso C (2019) Easing the deployment and management of cloud federated networks across virtualised clusters In: Proceedings of the 9th International Conference on Cloud Computing and Services Science, CLOSER 2019, Heraklion, Crete, Greece, May 2-4, 2019, 601–608. https://doi.org/10.5220/0007877406010608.

  80. Rodero-Merino L, Vaquero LM, Gil V, Galán F, Fontán J, Montero RS, Llorente IM (2010) From infrastructure delivery to service management in clouds. Futur Gener Comput Syst 26(8):1226–1240. https://doi.org/10.1016/j.future.2010.02.013.

    Article  Google Scholar 

  81. Ferrer AJ, Hernández F, Tordsson J, Elmroth E, Ali-Eldin A, Zsigri C, Sirvent R, Guitart J, Badia RM, Djemame K, Ziegler W, Dimitrakos T, Nair SK, Kousiouris G, Konstanteli K, Varvarigou T, Hudzia B, Kipp A, Wesner S, Corrales M, Forgó N, Sharif T, Sheridan C (2012) OPTIMIS: A holistic approach to cloud service provisioning. Futur Gener Comput Syst 28(1):66–77. https://doi.org/10.1016/j.future.2011.05.022.

    Article  Google Scholar 

  82. Ferrer AJ, Lordan F, Ortiz D, Guitart J, Macias M, Panuccio P, M. Badia R, Ponsard C, Temporale C, García D, Sirvent R, Deprez J, Sommacampagna D, Djemame K, Armstrong D, Agiatzidou E, Ejarque J, Blasi L, Kammer M (2014) Ascetic - adapting service lifecycle towards efficient clouds In: European Project Space on Information and Communication Systems - EPS Barcelona, 89–106.. SciTePress, Barcelona. https://doi.org/10.5220/0006183400890106.

    Google Scholar 

  83. ASCETiC consortium (2013) The ASCETiC project. http://ascetic-project.eu/. Accessed 12 Oct 2019.

  84. HARNESS consortium (2012) The HARNESS project: Hardware and Network-Enhanced Software Systems for Cloud Computing. http://www.harness-project.eu/. Accessed 12 Oct 2019.

  85. Coutinho JGF, Pell O, O’Neill E, Sanders P, McGlone J, Grigoras P, Luk W, Ragusa C (2014) Harness project: Managing heterogeneous computing resources for a cloud platform. In: Goehringer D, Santambrogio MD, Cardoso JMP, Bertels K (eds)Reconfigurable Computing: Architectures, Tools, and Applications, 324–329.. Springer. https://doi.org/10.1007/978-3-319-05960-0_36.

  86. Paraiso F, Merle P, Seinturier L (2016) soCloud: a service-oriented component-based PaaS for managing portability, provisioning, elasticity, and high availability across multiple clouds. Computing 98(5):539–565. https://doi.org/10.1007/s00607-014-0421-x.

    Article  MathSciNet  Google Scholar 

  87. OASIS (2011) Service Component Architecture (SCA). http://www.oasis-opencsa.org/sca. Accessed 12 Oct 2019.

  88. Giannakopoulos I, Papailiou N, Mantas C, Konstantinou I, Tsoumakos D, Koziris N (2014) CELAR: Automated application elasticity platform In: IEEE International Conference on Big Data (Big Data), 23–25. https://doi.org/10.1109/BigData.2014.7004481.

  89. CELAR consortium (2012) The CELAR project. http://www.celarcloudproject.eu/. Accessed 12 Oct 2019.

  90. Selea T, Drăgan I, Fortiş T-F (2017) The CloudLightning Approach to Cloud-user Interaction In: Proceedings of the 1st International Workshop on Next Generation of Cloud Architectures. CloudNG:17, 4–145. https://doi.org/10.1145/3068126.3068130.

  91. CloudLightning consortium (2018) The CloudLightning project. https://cloudlightning.eu/. Accessed 12 Oct 2019.


Page 2

Skip to main content

From: Cloud resource orchestration in the multi-cloud landscape: a systematic review of existing frameworks

  Name Organisation Active Description References
  Heat OpenStack 2010-present Heat orchestrates composite cloud applications via templates, through both an OpenStack-native API and a CloudFormation-compatible Query API. [45]
  Cloudify GigaSpaces 2012-present Cloudify is a TOSCA-based cloud orchestration framework which enables to model applications and services and automate their entire lifecycle. [46]
  Brooklyn Apache 2012-present Brooklyn is a cloud orchestration framework implementing OASIS CAMP that allows to deploy and manage applications via declarative blueprints. [47]
  Stratos Apache 2013-2017 Stratos is a polyglot PaaS framework that helps model and run composite and scalable applications on all major cloud infrastructures. [48]
  Alien4Cloud FastConnect 2014-present Alien4Cloud is a web-based platform providing means to model, deploy and manage TOSCA-based applications via a TOSCA runtime engine. [49]
  Terraform HashiCorp 2014-present Terraform is an infrastructure-as-code tool that enables to provision, and manage infrastructures using a high-level configuration language. [50]
Commercial CloudFormation AWS 2011-present CloudFormation is an infrastructure-as-code tool that helps model and set up AWS infrastructure resources by means of a JSON encoded template. [51]
  Cloudiator University of Ulm 2015-2017 Cloudiator is a cross-cloud orchestration tool that allows to describe an application once and deploy it on different public and private cloud providers. [52, 53]
  Roboconf University of Grenoble Alpes 2014-2017 Roboconf is both a platform and a framework tool to deploy and manage elastic cloud applications using automatic reactions and reconfigurations. [54]
  INDIGO INDIGO consortium 2015-2017 INDIGO is a data and computing platform targeted at scientific communities, which optimises application execution on cloud and grid infrastructures. [55, 56]
  MiCADO COLA consortium 2017-2019 MiCADO is a highly customisable multi-cloud orchestration and auto-scaling framework for Docker containers, orchestrated by Kubernetes. [57]
  MODAClouds MODAClouds consortium 2012-2015 MODAClouds is a toolbox and a runtime platform for the design and automatic deployment of applications on multiple clouds with guaranteed QoS. [58, 59]
Academic SeaClouds SeaClouds consortium 2013-2016 SeaClouds is a framework that enables seamless adaptive multi-cloud management of service-based applications over multiple heterogeneous clouds. [60, 61]