How many grams of NaOH must be dissolved in one litre of water to prepare its N 10 solution what will be its pH value?

Definitions

Solute-the substance being dissolved

Solvent-the substance doing the dissolving (the larger amount)

Solution- a homogeneous mixture of the solute and the solvent

Solution= solvent + solute

Aqueous (aq)= water solution

Tincture= alcohol solution

Amalgam= Mercury solution

Molarity (M)- is the molar concentration of a solution measured in moles of solute per liter of solution.

How many grams of NaOH must be dissolved in one litre of water to prepare its N 10 solution what will be its pH value?

The molarity definition is based on the volume of the solution, NOT the volume of water.

Vocab. Lesson

 Incorrect= The solution is 5.0 Molarity.

Correct= The solution is 5.0 Molar.

 Example Problems

Level 1- Given moles and liters

Determine the molarity when 3.0 moles of sucrose are dissolved to make 2.0 liters of solution.

3.0 mol= X  = 1.5M solution
2.0 liters

Level 2- Given Molarity and liters of solution

 Determine the number of moles of salt dissolved in 5.0 liters of a 0.50M solution of salt water.

X mol= 0.5M solution
5.0 liters

cross multiply, X= 2.5 mols

Level 3- Given grams (instead of moles) and liters of solution

Determine the molarity when 117g of NaCl are dissolved to make 0.500 liters of solution.

   1st convert to moles, 2nd plug into the molarity equation

117g NaCl( 1mol/58.5g)= 2.00mol NaCl

2.00 mol= 4.00M solution
0.500 liters

Level 4-Given grams (instead of moles) and milliliters of solution (instead of liters)

Determine the molarity when 55.5g of CaCl2 are dissolved to make 250.mL of solution.

1st convert to moles, 2nd convert to liters, 3rd plug into the molarity equation

55.5g CaCl2( 1mol/111g)= 0.500mol CaCl2

250.ml( 1L/1000mL) =0.250L

0.500 mol= 2.00M solution
0.250 liters

Past Regents Questions-Follow link to check the answers

Jan 2003-44 What is the molarity of a solution of NaOH if 2 liters of the solution contains 4 moles of NaOH?

(1) 0.5 M     (3) 8 M
(2) 2 M       (4) 80 M

Jan. 04-41 What is the molarity of a solution containing 20 grams of NaOH in 500 milliliters of solution?

(1) 1 M (2) 2 M (3) 0.04 M (4) 0.5 M

 

Jan 2002-42 What is the molarity of a solution that contains 0.50 mole of NaOH in 0.50 liter of solution?

(1) 1.0 M      (3) 0.25 M
(2) 2.0 M      (4) 0.50 M

Aug. 2006-42 How many total moles of KNO3 must be dissolved in water to make 1.5 liters of a 2.0 M solution?

     (1) 0.50 mol     (2) 2.0 mol     (3) 3.0 mol     (4) 1.3 mol

Aug 2005-

41 What is the total number of moles of NaCl(s) needed to make 3.0 liters of a 2.0 M NaCl solution?(1) 1.0 mol      (3) 6.0 mol

(2) 0.70 mol    (4) 8.0 mol

June 2006-

16 Molarity is defined as the(1) moles of solute per kilogram of solvent(2) moles of solute per liter of solution(3) mass of a solution

(4) volume of a solvent

Aug 2008-

15 Which phrase describes the molarity of a solution?(1) liters of solute per mole of solution(2) liters of solution per mole of solution(3) moles of solute per liter of solution

(4) moles of solution per liter of solution

June 2009-46 Which sample of HCl(aq) contains the greatest number of moles of solute particles?
(1) 1.0 L of 2.0 M HCl(aq)
(2) 2.0 L of 2.0 M HCl(aq)
(3) 3.0 L of 0.50 M HCl(aq)
(4) 4.0 L of 0.50 M HCl(aq)

June 2007-

13 A 3.0 M HCl(aq) solution contains a total of(1) 3.0 grams of HCl per liter of water(2) 3.0 grams of HCl per mole of solution(3) 3.0 moles of HCl per liter of solution

(4) 3.0 moles of HCl per mole of water

June 2010-14 The molarity of an aqueous solution of NaCl is defined as the(1) grams of NaCl per liter of water(2) grams of NaCl per liter of solution(3) moles of NaCl per liter of water

(4) moles of NaCl per liter of solution

Jan 2008-

15 Which unit can be used to express solution concentration?(1) J/mol     (3) mol/L

(2) L/mol    (4) mol/s

Jan 04-41 What is the Molarity of a solution containing 20 grams of NaOH in 500 milliliters of solution?(1) 1 M      (3) 0.04 M

(2) 2 M      (4) 0.5 M

Jan 2010-40 What is the molarity of 1.5 liters of an aqueous solution that contains 52 grams of lithium fluoride, LiF, (gram-formula mass =26 grams/mole)?(1) 1.3 M    (3) 3.0 M

(2) 2.0 M    (4) 0.75 M

on to ppm or Molality

back to Math of Chemistry Links

How many grams of NaOH must be dissolved in one litre of water to prepare its N 10 solution what will be its pH value?
Chemical Demonstration Videos
How many grams of NaOH must be dissolved in one litre of water to prepare its N 10 solution what will be its pH value?

The molar concentration unit [mol/ L (M)] is a conventionally widely used as concentration method. It is the number of moles of target substance (solute) dissolved in 1 liter of solution. Here is how to calculate the concentration.

(Weight of 1 liter solution) x (purity) ÷ molecular weight
[Specific gravity of solution (g/mL) x 1,000 (mL) x Purity (w/w%) /100 ÷ Molecular weight]

For example, let's calculate the molar concentration of 2-mercaptoethanol (HSCH2CH2OH). The necessary information is as follows.

  • Specific gravity (or density) = 1.114 g/mL
  • Purity (or content) = 100 w/w% (assumed)
  • Molecular weight = 78.13

By calculating this value by applying this value to the above equation, you can know the molar concentration.
1.114 g/mL x 1,000mL x 100w/w%/100 ÷ 78.13 = 14.26mol/L

In order to caluculate the concentration like above, it is necessary to know three points of "specific gravity (or density)", "purity (or content)" and "molecular weight". The table below is a quick reference chart of common acid and base concentrations. In acid and alkali, there is a use for "neutralization titration", "normality (N)" is often used.

【Quick reference chart of common acid and base concentrations】

Compound Molecular formula Molecular weight Purity
(w/w%)
Specific gravity
(20℃)
Concentration
(mol/L)
Equivalent Normality
(N)
Hydrochloric acid HCl 36.46 20% 1.10 6.0 1 6.0
35% 1.17 11.2 11.2
Nitric acid HNO3 63.01 60% 1.37 13.0 1 13.0
65% 1.39 14.3 14.3
70% 1.41 15.7 15.7
Sulfate H2SO4 98.08 100% 1.83 18.7 2 37.3
Phosphoric acid H3PO4 98.00 85% 1.69 14.7 3 44.0
90% 1.75 16.1 48.2
Acetate CH3COOH 60.05 100% 1.05 17.5 1 17.5
Perchloric acid HClO4 100.46 60% 1.54 9.2 1 9.2
70% 1.67 11.6 11.6
Hydrogen peroxide water H2O2 34.01 30% 1.11 9.8 -
35% 1.13 11.6
Ammonia water NH3 17.03 25% 0.91 13.4 1 13.4
28% 0.90 14.8 14.8

【Quick reference of concentration and unit】

●How to express concentration of solution

Expression Commentary
Weight percent concentration "g number" of solute in 100g solution. Expressed as w/w%, wt%, and % for density in many cases.
Volume percent concentration "m number" of solute in 100m solution. Expressed as v/v% when mixture or solute is liquid.
Weight versus volume percent concentration "g number of solute in 100m of solution. Expressed as w/v%.
Normality Gram equivalent number of solute in 1L solution. Expressed as N for capacity analysis.
Volume specific concentration Concentration indirectly expressed by the volume ratio of diluting the liquid reagent. It is used in JIS and others.
Example: Sulfuric acid (1 + 2) → Sulfuric acid is shown diluted with 2 volumes of water.
Weight ratio concentration Concentration indirectly expressed by weight ratio at which solid reagent is dissolved. It is used in JIS and others.
Example: Sodium chloride (1 + 19) →Dissolved in 19 weight of water with respect to 1 of NaCl.
Molarity Mol number of target substance (solute) in 1L of solution. Expressed as mol/ or M.

●Prefix representing multiple

Express bigness Express smallness
100 =102 h(Hecto) 1/100 =10-2 c(Centi) %(Percent)
1000 =103 k(Kilo) 1/1000 =10-3 m(Milli) ‰(Permili)
100万 =106 M(Mega) 1/100万 =10-6 μ(Micro) ppm
1 Billion =109 G(Giga) 1/10Billion =10-9 n(Nano) ppb
1 Trillion =1012 T(Tera) 1/1 Trillion =10-12 p(Pico) ppt
1000 Trillion =1015 p(Peta) 1/1000 Trillion =10-15 f(Femto) ppq

●ppmConversion table

ppb ppm % mg/g mg/L
1,000 1 0.0001 0.001 1
10,000 10 0.001 0.01 10
100,000 100 0.01 0.1 100
1,000,000 1,000 0.1 1 1,000
10,000,000 10,000 1 10 10,000