Find the minimum distance from the origin to the line of intersection of the two planes

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

Distance on parabola: The distance of any arbitrary point on the parabola #z=x^2+y^2# is
#S(x,y) = \sqrt{x^2+y^2+z^2(x,y)}=\sqrt{x^2+y^2+(x^2+y^2)^2}#
#\qquad \qquad \qquad = \sqrt{(x^2+y^2)(1+x^2+y^2)}# ...... (Eq 1)

This is the function in whose extremum we are interested in

Constraint Condition: But we do not consider all the points on the parabola but only those points that lie on the intersection with the plane #x+y+z=12#.

Plane: #\quad z = 12 - (x+y)#
Parabola: #\quad z = x^2+y^2#

To find the equation representing the locus of intersection points, eliminate #z# in the parabola equation using its value on the plane equation,

#(x^2+y^2)=12-(x+y); #
#x^2+y^2+(x+y)-12=0# ......(Eq 2)

So #x# and #y# cannot take arbitrary values but are subjected to a further constraint given by Eq 2. The constraint function is then #\phi(x,y) = x^2 + y^2 + (x+y) - 12#;

Lagrange Multiplier Technique: When you want to extremize a function #S(x,y)# subject to the constraint #\phi(x,y)=0#, define a new function #\L(x,y) = S(x,y) - \lambda\phi(x,y)#. This new function #L(x,y)# is the Lagrangian and #\lambda# is the Lagrangian Multiplier. Extremizing the Lagrangian #L(x,y)# is equivalent to extremizing #S(x,y)#, subject to the constraint #\phi(x,y)=0#.

Applying this technique to our problem -

Step 1: Construct the Lagrangian function and calculate its gradient,

#L(x,y) = S(x,y) - \lambda\phi(x,y);#

#S(x,y) = \sqrt{(x^2+y^2)(1+x^2+y^2)};#
#\phi(x,y) = (x^2+y^2)+(x+y)-12;#

#\frac{\delS}{\delx} = \frac{x{1+2(x^2+y^2)}}{\sqrt{(x^2+y^2)(1+x^2+y^2)}};#

#\frac{\delS}{\delx} = \frac{y{1+2(x^2+y^2)}}{\sqrt{(x^2+y^2)(1+x^2+y^2)}};#

#\frac{\del\phi}{\delx} = (2x+1); \qquad \qquad \frac{\del\phi}{\delx} = (2x+1); #

#\gradL(x,y) = \frac{\delL}{\delx}\hati + \frac{\delL}{\dely}\hatj;#

#\frac{\delL}{\delx} = \frac{\delS}{\delx} - \lambda\frac{\del\phi}{\delx}; \qquad \qquad \frac{\delL}{\dely} = \frac{\delS}{\dely} - \lambda\frac{\del\phi}{\dely}; #

Step 2: The extremum points of the Lagrangian is found by setting its gradient to zero and solve the set of equations that each component of the gradient yields,

#\gradL(x,y) = 0; \qquad \frac{\delL}{\delx}=0; \qquad \qquad \frac{\delL}{\dely}=0#

Step 3: Solve these equations to find the coordinates of the extremum point.

X component:
#\quad \frac{\delS}{\delx} - \lambda\frac{\del\phi}{\delx}=0; \qquad \rightarrow \qquad \frac{\delS}{\delx} = \lambda\frac{\del\phi}{\delx};#

#\frac{x{1+2(x^2+y^2)}}{\sqrt{1+(x^2+y^2)}} = \lambda(2x+1)#

#\lambda = (\frac{x}{2x+1})(\frac{1+2(x^2+y^2)}{\sqrt{1+x^2+y^2}})# ...... (Eq 3)

Y component:
#\frac{\delS}{\delx} - \lambda\frac{\del\phi}{\delx}=0; \qquad \rightarrow \qquad \frac{\delS}{\delx} = \lambda\frac{\del\phi}{\delx};#

#\frac{y{1+2(x^2+y^2)}}{\sqrt{1+(x^2+y^2)}} = \lambda(2y+1)#

#\lambda = (\frac{y}{2y+1})(\frac{1+2(x^2+y^2)}{\sqrt{1+x^2+y^2}})# ...... (Eq 4)

Eliminating #\lambda# between Eq 3 and Eq 4,

#(\frac{x}{2x+1}) = (\frac{y}{2y+1}) \qquad \rightarrow \qquad x(2y+1)=y(2x+1)#

#cancel{2xy} + x = cancel{2xy} + y; \qquad x = y#

Lagrangian #L(x,y)# has an extremum along the #x=y# plane,

Step 4: Evaluate the complete set of the coordinates, using the constraint equation,

Substituting this (#x=y#) in the constraint equation #\phi(x,y)=0#, we get

#2x^2+2x-12=0; \qquad \rightarrow \qquad x^2+x-6=0#

This quadratic equation has solutions : #x_1=+2; \qquad x_2=-3;#

#x_1=+2# is the meaningful solution.

At #(x,y)=(2,2)# the value of #z# is found either by using the plane equation or by using the parabola equation. Alternatively, we can use both and verify that they both result in the same value.

Parabola: #x^2+y^2=z; \qquad z = 2^2+2^2=8;#
Plane: #z = 12-(x+y)=12-(2+2)=8;#

Thus the Lagrangian #L(x,y)# shows that the extreme value is at #(x,y,z)=(2,2,8)#.

It lies at a distance of
#S(x=2,y=2) = \sqrt{(2^2+2^2)(1+2^2+2^2)} = 6\sqrt{2}# units from the coordinate origin.

Let us see what happen with the Lagrange Multipliers formulation

$$ \Pi_1\to (p-p_1)\cdot \vec n_1 = 0\\ \Pi_2\to (p-p_2)\cdot \vec n_2 = 0 $$

with $p = (x,y,z)$ are the two restriction planes so

$$ L(p,\lambda_1,\lambda_2) = \frac 12p\cdot p+\lambda_1(p-p_1)\cdot \vec n_1+\lambda_2(p-p_2)\cdot \vec n_2 $$

and the stationary conditions are

$$ L_p = p +\lambda_1\vec n_1+\lambda_2\vec n_2 = 0\\ L_{\lambda_1} = (p-p_1)\cdot \vec n_1 = 0\\ L_{\lambda_2} = (p-p_2)\cdot \vec n_2 = 0\\ $$

then substituting we have two equations and two unknowns $\lambda_1,\lambda_2$

$$ \lambda_1\vec n_1\cdot\vec n_1+\lambda_2\vec n_2\cdot\vec n_1 = p_1\cdot \vec n_1\\ \lambda_1\vec n_1\cdot\vec n_2+\lambda_2\vec n_2\cdot\vec n_2 = p_2\cdot\vec n_2 $$

finally we have after the solutions $\bar\lambda_1,\bar\lambda_2$

$$ p^* = \bar\lambda_1\vec n_1+\bar\lambda_2\vec n_2 $$

so $d = \lVert p^*\rVert$

NOTE

Here the minimization of $\lVert p\rVert$ is equivalent to the minimization of $\frac 12\lVert p\rVert^2 = \frac 12p\cdot p$ and also

$$ \vec n_1 = (1,2,-2)\\ p_1 = (3,0,0)\\ \vec n_2 = (2,1,2)\\ p_2 = (0,6,0) $$

Postingan terbaru

LIHAT SEMUA