A nurse is caring for a client who has a glomerular filtration rate of 10 ml/min

  1. ADA. Microvascular complications and foot care. Sec. 9. In standards of medical care in diabetes - 2015. Diabetes Care. 2015;38:S58–66.

    Google Scholar 

  2. KDOQI (Kidney Disease Outcomes Quality Initiative). Clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49:S12–154.

  3. ADA. Glycemic targets. Sec. 6. In standards of medical care in diabetes - 2015. Diabetes Care. 2015;38:S33–40.

    Google Scholar 

  4. Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, et al. AACE comprehensive diabetes management algorithm 2013. Endocr Pract. 2013;19:327–36.

    PubMed  Google Scholar 

  5. KDOQI (Kidney Disease Outcomes Quality Initiative). Clinical Practice Guideline for Diabetes and CKD: 2012 Update. Am J Kidney Dis. 2012, 60:850–886.

  6. DCCT. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329:977–86.

    Google Scholar 

  7. DCCT. Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. The Diabetes Control and Complications (DCCT) Research Group. Kidney Int. 1995;47:1703–20.

    Google Scholar 

  8. EDIC. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA. 2003;290:2159–67.

    Google Scholar 

  9. Levin SR, Coburn JW, Abraira C, Henderson WG, Colwell JA, Emanuele NV, et al. Effect of intensive glycemic control on microalbuminuria in type 2 diabetes. Veterans Affairs Cooperative Study on Glycemic Control and Complications in Type 2 Diabetes Feasibility Trial Investigators. Diabetes Care. 2000;23:1478–85.

    Article  CAS  PubMed  Google Scholar 

  10. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28:103–17.

    CAS  PubMed  Google Scholar 

  11. UKPDS. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:837–53.

    Google Scholar 

  12. Coca SG, Ismail-Beigi F, Haq N, Krumholz HM, Parikh CR. Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes. Arch Intern Med. 2012;172:761–9.

    PubMed Central  PubMed  Google Scholar 

  13. Gerstein HC, Miller ME, Byington RP, Goff Jr DC, Bigger JT, Buse JB, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.

    CAS  PubMed  Google Scholar 

  14. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.

    CAS  PubMed  Google Scholar 

  15. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.

    CAS  PubMed  Google Scholar 

  16. Molitch ME, Adler AI, Flyvbjerg A, Nelson RG, So WY, Wanner C, et al. Diabetic kidney disease: a clinical update from Kidney Disease: Improving Global Outcomes. Kidney Int. 2015;87(1):20-30. doi: 10.1038/ki.2014.128. Epub 2014 Apr 30.

  17. Shurraw S, Hemmelgarn B, Lin M, Majumdar SR, Klarenbach S, Manns B, et al. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease: a population-based cohort study. Arch Intern Med. 2011;171:1920–7.

    PubMed  Google Scholar 

  18. Ricks J, Molnar MZ, Kovesdy CP, Shah A, Nissenson AR, Williams M, et al. Glycemic control and cardiovascular mortality in hemodialysis patients with diabetes: a 6-year cohort study. Diabetes. 2012;61:708–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ramirez SP, McCullough KP, Thumma JR, Nelson RG, Morgenstern H, Gillespie BW, et al. Hemoglobin A(1c) levels and mortality in the diabetic hemodialysis population: findings from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Diabetes Care. 2012;35:2527–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Adler A, Casula A, Steenkamp R, Fogarty D, Wilkie M, Tomlinson L, et al. Association between glycemia and mortality in diabetic individuals on renal replacement therapy in the U.K. Diabetes Care. 2014;37:1304–11.

    Article  CAS  PubMed  Google Scholar 

  21. Freedman BI, Shenoy RN, Planer JA, Clay KD, Shihabi ZK, Burkart JM, et al. Comparison of glycated albumin and hemoglobin A1c concentrations in diabetic subjects on peritoneal and hemodialysis. Perit Dial Int. 2010;30:72–9.

    CAS  PubMed  Google Scholar 

  22. Kalantar-Zadeh K. A critical evaluation of glycated protein parameters in advanced nephropathy: a matter of life or death: A1C remains the gold standard outcome predictor in diabetic dialysis patients. Counterpoint. Diabetes Care. 2012;35:1625–8.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Freedman BI. A critical evaluation of glycated protein parameters in advanced nephropathy: a matter of life or death: time to dispense with the hemoglobin A1C in end-stage kidney disease. Diabetes Care. 2012;35:1621–4.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Rabkin R, Ryan MP, Duckworth WC. The renal metabolism of insulin. Diabetologia. 1984;27:351–7.

    Article  CAS  PubMed  Google Scholar 

  25. Baldwin D, Zander J, Munoz C, Raghu P, DeLange-Hudec S, Lee H, et al. A randomized trial of two weight-based doses of insulin glargine and glulisine in hospitalized subjects with type 2 diabetes and renal insufficiency. Diabetes Care. 2012;35:1970–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Epocrates Online. https://online.epocrates.com.

  27. de la Pena A, Riddle M, Morrow LA, Jiang HH, Linnebjerg H, Scott A, et al. Pharmacokinetics and pharmacodynamics of high-dose human regular U-500 insulin versus human regular U-100 insulin in healthy obese subjects. Diabetes Care. 2011;34:2496–501.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2009;32:193–203.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wile DJ, Toth C. Association of Metformin, Elevated Homocysteine, and Methylmalonic Acid Levels and Clinically Worsened Diabetic Peripheral Neuropathy. Diabetes Care. 2010;33:156–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sambol NC, Chiang J, Lin ET, Goodman AM, Liu CY, Benet LZ, et al. Kidney function and age are both predictors of pharmacokinetics of metformin. J Clin Pharmacol. 1995;35:1094–102.

    CAS  PubMed  Google Scholar 

  31. Salpeter SR, Greyber E, Pasternak GA, Salpeter EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2010;14(4):CD002967.

  32. Lalau JD, Lacroix C, Compagnon P, de Cagny B, Rigaud JP, Bleichner G, et al. Role of metformin accumulation in metformin-associated lactic acidosis. Diabetes Care. 1995;18:779–84.

    Article  CAS  PubMed  Google Scholar 

  33. Inzucchi SE, Lipska KJ, Mayo H, Bailey CJ, McGuire DK. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA. 2014;312:2668–75.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Herrington WG, Levy JB. Metformin: effective and safe in renal disease? Int Urol Nephrol. 2008;40:411–7.

    CAS  PubMed  Google Scholar 

  35. Eppenga WL, Lalmohamed A, Geerts AF, Derijks HJ, Wensing M, Egberts A, et al. Risk of lactic acidosis or elevated lactate concentrations in metformin users with renal impairment: a population-based cohort study. Diabetes Care. 2014;37:2218–24.

    Article  CAS  PubMed  Google Scholar 

  36. Richy FF, Sabido-Espin M, Guedes S, Corvino FA, Gottwald-Hostalek U. Incidence of lactic acidosis in patients with type 2 diabetes with and without renal impairment treated with metformin: a retrospective cohort study. Diabetes Care. 2014;37:2291–5.

    Article  CAS  PubMed  Google Scholar 

  37. Holstein A, Plaschke A, Hammer C, Ptak M, Kuhn J, Kratzsch C, et al. Hormonal counterregulation and consecutive glimepiride serum concentrations during severe hypoglycaemia associated with glimepiride therapy. Eur J Clin Pharmacol. 2003;59:747–54.

    CAS  PubMed  Google Scholar 

  38. Holstein A, Beil W. Oral antidiabetic drug metabolism: pharmacogenomics and drug interactions. Expert Opin Drug Metab Toxicol. 2009;5:225–41.

    CAS  PubMed  Google Scholar 

  39. Balant L, Zahnd G, Gorgia A, Schwarz R, Fabre J. Pharmacokinetics of glipizide in man: influence of renal insufficiency. Diabetologia. 1973:331–8.

  40. Arjona Ferreira JC, Marre M, Barzilai N, Guo H, Golm GT, Sisk CM, et al. Efficacy and Safety of Sitagliptin Versus Glipizide in Patients With Type 2 Diabetes and Moderate-to-Severe Chronic Renal Insufficiency. Diabetes Care. 2013;36(5):1067-73. doi: 10.2337/dc12-1365. Epub 2012 Dec 17.

  41. Melander A. Kinetics-effect relations of insulin-releasing drugs in patients with type 2 diabetes: brief overview. Diabetes. 2004;53 Suppl 3:S151–5.

    Article  CAS  PubMed  Google Scholar 

  42. Inoue T, Shibahara N, Miyagawa K, Itahana R, Izumi M, Nakanishi T, et al. Pharmacokinetics of nateglinide and its metabolites in subjects with type 2 diabetes mellitus and renal failure. Clin Nephrol. 2003;60:90–5.

    CAS  PubMed  Google Scholar 

  43. Hasslacher C. Safety and efficacy of repaglinide in type 2 diabetic patients with and without impaired renal function. Diabetes Care. 2003;26:886–91.

    Article  CAS  PubMed  Google Scholar 

  44. Ryder RE. Pioglitazone has a dubious bladder cancer risk but an undoubted cardiovascular benefit. Diabetic Med. 2015;32(3):305-13. doi: 10.1111/dme.12627. Epub 2014 Dec 3.

  45. Levin D, Bell S, Sund R, Hartikainen SA, Tuomilehto J, Pukkala E, et al. Pioglitazone and bladder cancer risk: a multipopulation pooled, cumulative exposure analysis. Diabetologia. 2015;58(3):493-504. doi: 10.1007/s00125-014-3456-9. Epub 2014 Dec 7.

  46. Snyder RW, Berns JS. Use of insulin and oral hypoglycemic medications in patients with diabetes mellitus and advanced kidney disease. Semin Dial. 2004;17:365–70.

    PubMed  Google Scholar 

  47. Bergman AJ, Cote J, Yi B, Marbury T, Swan SK, Smith W, et al. Effect of renal insufficiency on the pharmacokinetics of sitagliptin, a dipeptidyl peptidase-4 inhibitor. Diabetes Care. 2007;30:1862–4.

    Article  CAS  PubMed  Google Scholar 

  48. Graefe-Mody U, Friedrich C, Port A, Ring A, Retlich S, Heise T, et al. Effect of renal impairment on the pharmacokinetics of the dipeptidyl peptidase-4 inhibitor linagliptin(*). Diabetes Obes Metab. 2011;13:939–46.

    CAS  PubMed  Google Scholar 

  49. Kalra S. Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology. Diabetes Ther. 2014;5:355–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Linnebjerg H, Kothare PA, Park S, Mace K, Reddy S, Mitchell M, et al. Effect of renal impairment on the pharmacokinetics of exenatide. Br J Clin Pharmacol. 2007;64:317–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Johansen OE, Whitfield R. Exenatide may aggravate moderate diabetic renal impairment: a case report. Br J Clin Pharmacol. 2008;66(4):568-9. doi: 10.1111/j.1365-2125.2008.03221.x. Epub 2008 May 15.

  52. US Food and Drug Administration. Information for Healthcare Professionals: Reports of Altered Kidney Function in patients using Exenatide (Marketed as Byetta). 2009.

  53. Davidson JA, Brett J, Falahati A, Scott D. Mild renal impairment and the efficacy and safety of liraglutide. Endocr Pract. 2011;17:345–55.

    PubMed  Google Scholar 

  54. Albiglutide Full Prescribing Information. 2014. https://www.gsksource.com/pharma/content/dam/GlaxoSmithKline/US/en/Prescribing_Information/Tanzeum/pdf/TANZEUM-PI-MG-IFU-COMBINED.PDF.

  55. Dulaglutide Full Prescribing Information. 2015. http://pi.lilly.com/us/trulicity-uspi.pdf.

  56. Chang YT, Wu JL, Hsu CC, Wang JD, Sung JM. Diabetes and end-stage renal disease synergistically contribute to increased incidence of cardiovascular events: a nationwide follow-up study during 1998–2009. Diabetes Care. 2014;37:277–85.

    Article  PubMed  Google Scholar 

  57. ADA. Cardiovascular disease and risk management. Sec. 8. In standards of medical care in diabetes - 2015. Diabetes Care. 2015;38:S49–57.

    Google Scholar 


Page 2

Medication class CKD stages 3 and 4 and predialysis stage 5
Insulin  
 Glargine No advised dose adjustment*
 Detemir No advised dose adjustment*
 NPH No advised dose adjustment*
 Regular No advised dose adjustment*
 Aspart No advised dose adjustment*
 Lispro No advised dose adjustment*
 Glulisine No advised dose adjustment*
First-generation sulfonylureas  
 Acetohexamide** Avoid use
 Chlorpropamide eGFR 50–80: reduce dose by 50 %
eGFR <50: avoid use
 Tolazamide Avoid use
 Tolbutamide Avoid use
Second-generation sulfonylureas  
 Glipizide eGFR <30: use with caution
 Glimepiride eGFR <60: use with caution
eGFR <30: avoid use
 Glyburide Avoid use
 Gliclazide** No dose adjustment
Glinides  
 Repaglinide No dose adjustment but may wish to use caution with eGFR <30
 Nateglinide eGFR <60: avoid use (but may consider use if patient is on hemodialysis)
Biguanides  
 Metformin*** Per FDA, do not use if serum Cr ≥ 1.5 mg/dL in men ≥ 1.4 mg/dL in women.
Consider
eGFR ≥45-59: use caution with dose and follow renal function closely (every 3–6 months)
eGFR ≥30-44: max dose 1000 mg/day or use 50 % dose reduction. Follow renal function every 3 months. Do not start as new therapy.
eGFR <30: avoid use
Thiazolidinediones  
 Pioglitazone No dose adjustment
 Rosiglitazone No dose adjustment
Alpha-glucosidase inhibitors  
 Acarbose serum Cr >2 mg/dl: avoid use
 Miglitol eGFR <25 or serum Cr >2 mg/dl: avoid use
DPP-4 inhibitor  
 Sitagliptin eGFR ≥50: 100 mg daily
eGFR 30–49: 50 mg daily
eGFR < 30: 25 mg daily
 Saxagliptin eGFR > 50: 2.5 or 5 mg daily
GFR ≤ 50: 2.5 mg daily
 Linagliptin No dose adjustment
 Alogliptin eGFR >60: 25 mg daily
eGFR 30–59: 12.5 mg daily
eGFR <30: 6.25 mg daily
SGLT2 inhibitors  
 Canagliflozin eGFR 45 to < 60: max dose 100 mg once daily
eGFR <45, avoid use
 Dapagliflozin eGFR < 60, avoid use
 Empagliflozin eGFR < 45, avoid use
Dopamine receptor agonist  
 bromocriptine mesylate No dose adjustment known but not studied: use with caution
Bile acid sequestrant  
 Colesevelam No dose adjustment known but limited data
GLP-1 Agonists  
 Exenatide eGFR 30–50: use caution
eGFR <30: avoid use
 Liraglutide No dose adjustment but use caution when starting or titrating the dose
 Albiglutide No dose adjustment needed
 Dulaglutide No dose adjustment needed
Amylin analog  
 Pramlintide No dose adjustment known but not studied in ESRD

  1. *Adjust dose based on patient response
  2. **Not available in the U.S.
  3. ***Recommendations are controversial